Batch Reinforcement Learning

Alan Fern

* Based in part on slides by Ronald Parr

Overview

°* What is batch reinforcement learning?

° Least Squares Policy Iteration

° Fitted Q-iteration

° Batch DQN

Online versus Batch RL

°* Online RL: integrates data collection and optimization

“ Select actions in environment and at the same time update
parameters based on each observed (s,a,s’,r)

° Batch RL: decouples data collection and optimization

~ First generate/collect experience in the environment giving a
data set of state-action-reward-state pairs {(s;,a,r,,s;’)}

“ We may not even know where the data came from
~ Use the fixed set of experience to optimize/learn a policy

° Online vs. Batch:
“ Batch algorithms are often more “data efficient” and stable

“ Batch algorithms ignore the exploration-exploitation
problem, and do their best with the data they have

Batch RL Motivation

° There are many applications that naturally fit the batch
RL model

° Medical Treatment Optimization:

“ |nput: collection of treatment episodes for an ailment giving
sequence of observations and actions including outcomes

“ Quput: a treatment policy, ideally better than current practice

°* Emergency Response Optimization:

“ |Input: collection of emergency response episodes giving
movement of emergency resources before, during, and after
911 calls

~ Qutput: emergency response policy

Batch RL Motivation

° Online Education Optimization:

“ Input: collection of episodes of students interacting with an
educational system that gives information and questions in
order to teach a topic

m Actions correspond to giving the student some information
or giving them a question of a particular difficulty and topic

“ Quput: a teaching policy that is tuned to student based on
what is known about the student

Least Squares Policy Iteration (LSPI)
° LSPIl is a model-free batch RL algorithm

“ Learns a linear approximation of Q-function
~ stable and efficient
“ Never diverges or gives meaningless answers

° LSPI can be applied to a dataset regardless of how
it was collected

“ But garbage in, garbage out.

Least-Squares Policy Iteration, Michail Lagoudakis and Ronald
Parr, Journal of Machine Learning Research (JMLR), Vol. 4,
2003, pp. 1107-11409.

http://www.cs.duke.edu/~parr/jmlr03.pdf

Least Squares Policy iteration

° No time to cover details of derivation
“ Details are in the appendix of these slides

° LSPI is a wrapper around an algorithm LSTDQ

° LSTDQ: learns a Q-function for current policy given
the batch of data

“ Can learn Q-function for policy from any (reasonable) set
of samples---sometimes called an off-policy method

“ No need to collect samples from current policy

° Disconnects policy evaluation from data collection
“ Permits reuse of data across iterations!
“ Truly a batch method.

Implementing LSTDQ

° LSTDQ uses a linear Q-function with features ¢, and
weights wy,.

QW(S’ a) = ZWk g/ (s,a)

defines greedy policy: 7, (S) =argmax, QW (s,a)

° For each (s,a,r,s’) sample in data set:

B, < B; +#(s,2)¢;(s,a)—A¢,(s,a)9, (s, z,,(S"))
b < b +1-¢(s,a) /

W Bh argmax_, Q,(s',a)

Running LSPI

°* There is a Matlab implementation available!

1. Collect a database of (s,a,r,s’) experiences
(this is the magic step)

2. Start with random weights (= random policy)

3. Repeat
“ Evaluate current policy against database
m Run LSTDQ to generate new set of weights

m New weights imply new Q-function and hence new
policy
“ Replace current weights with new weights

° Until convergence

Results: Bicycle Riding

°* Watch random controller operate simulated bike
° Collect ~40,000 (s,a,r,s’) samples

° Pick 20 simple feature functions (x5 actions)

°* Make 5-10 passes over data (Pl steps)

°* Reward was based on distance to goal + goal
achievement

° Result:
Controller that balances and rides to goal

Bicycle Trajectories

= e S ST T T Bth teration™ "7 B

Starting
Position :

N

Ard iteréatic:n

2nd ﬁeratiun (crash;l

RO e S S—— 5

iteration - \

: : : : : Ath and Bth
—ADO e e RREITIIIIE Prneeeeees reesseseee s arations

R S — T S — :

800 ; ; ; ; ; ; ;
=200 0 200 400 500 200 1000 1200

What about Q-learning?

* Ran Q-learning with same features

* Used experience replay for data efficiency

Q-learning Results

E'I:":ID T T T T T T T T T T T
2500 T -
20001 T m
@ -
o 1500 .
m —_
1000 B _
500 / -
D-I | | 1 |
] 500 1900 1500 2000 2800 aA000 32500 4000 4800 BOOO
Mumber of training episodes

LSPI Robustness

Average number of balancing steps

2000 2500 3000
Mumber of training episodes

4] 500 1000 1500

4500

4000

4500

5000

Some key points

° LSPI is a batch RL algorithm

~ Can generate trajectory data anyway you want

“ Induces a policy based on global optimization over
full dataset

° Very stable with no parameters that need
tweaking

So, what’s the bad news?

° LSPI does not address the exploration problem
“ |t decouples data collection from policy optimization
“ This is often not a major issue, but can be in some cases

° k% can sometimes be big
“ Lots of storage
“ Matrix inversion can be expensive

° Bicycle needed “shaping” rewards

° Still haven’t solved

“ Feature selection (issue for all machine learning, but RL
seems even more sensitive)

Fitted Q-Iteration

° LSPI is limited to linear functions over a given set of
features

° Fitted Q-lteration allows us to use any type of
function approximator for the Q-function
“ Random Forests have been popular
“ Deep Networks

° Fitted Q-Iteration is a very straightforward batch
version of Q-learning

Damien Ernst, Pierre Geurts, Louis Wehenkel. (2005).
Tree-Based Batch Mode Reinforcement Learning
Journal of Machine Learning Research; 6(Apr):503—556.

Fitted Q-lteration

1. LetD ={(s; a;,1;,5;)}} be our batch of transitions

2. Initialize approximate Q-function Qg
(perhaps weights of a deep network)

3. Initialize training setT = @

4. For each (s;,a;,1;,5;) €D
= §; = (r;+BmaxQq(s;,a’) I/ new estimate of Q(s;, a;)
O Add training ec;ample ((s;,a;),q;)t0 T

5. Learn new Qg from training data T

6. Goto 3

Step 5 could use any regression algorithm: neural network,
random forests, support vector regression, Gaussian Process

DQN

°* DQN was developed by DeepMind originally for
online learning of Atari games

°* However, the algorithm can be used effectively as is
for Batch RL.

° | haven’t seen this done, but it is straightforward.

DQON for Batch RL

Let D = {(s;, a;, 13, s{)}} be our batch of transitions
Initialize neural network parameter values to 6

Randomly sample a mini-batch of B transition {(sy, a, 7%, S.)}
from D

Perform a TD update for each parameter based on mini-batch

0 <0+ “z ("‘k + Bmax Qo(sg,a’) — Qp(sy, ak)) Vo Q(sk, ax)
X

Goto 3

Appendix

21

Projection Approach to Approximation

° Recall the standard Bellman equation:
V7(s) = max, R(s,a)+y) _P(s'|s,aV"(s")

or equivalently V" =T[V'] where T[.]is the
Bellman operator

° Recall from value iteration, the sub-optimality of a
value function can be bounded in terms of the

Bellman error:
V=TIV,

° This motivates trying to find an approximate value
function with small Bellman error

Projection Approach to Approximation

° Suppose that we have a space of representable value
functions

“ E.g. the space of linear functions over given features

° Let I1 be a projection operator for that space

“ Projects any value function (in or outside of the space) to
“closest” value function in the space

* “Fixed Point” Bellman Equation with approximation

Vo =TTV ")

“ Depending on space this will have a small Bellman error

° LSPI will attempt to arrive at such a value function

“ Assumes linear approximation and least-squares projection

Projected Value Iteration
° Naive ldea: try computing projected fixed point using VI

° Exact VI: (iterate Bellman backups)

Vi+1:-|-[\/i]

° Projected VI: (iterated projected Bellman backups):

Vi H(TN'])
Projects exact Bellman exact Bellman backup

backup to closest function (produced value function)
In our restricted function space

Example: Projected Bellman Backup

Restrict space to linear functions over a single feature ¢:

V(3) = w-¢(s)

Suppose just two states s; and s, with: ¢(s;)=1, ¢(s,)=2
Suppose exact backup of V' gives:

TVI(s) =2, TIV'](s,) =2

Can we represent this exact
\! J backup in our linear space?

NO

B(s)=1 d(s,)=2

Example: Projected Bellman Backup

Restrict space to linear functions over a single feature ¢:

V(3) = w-¢(s)

Suppose just two states s; and s, with: ¢(s;)=1, ¢(s,)=2
Suppose exact backup of V' gives:

TIV'I(s) =2, TIV'I(s,) =2
The backup can’t be represented via our linear function:

T VI(s) =1.333- ¢(S)

¢ ¢ projected backup is
just least-squares fit
to exact backup

\7i+1:H(T[\7i])

B(s)=1 d(s,)=2

Problem: Stability

° Exact value iteration stability ensured by
contraction property of Bellman backups:

Vi+1:-|-[\/i]

° |Is the “projected” Bellman backup a contraction:

\/ i1 :(TNI])

Example: Sta bility Problem [Bertsekas & Tsitsiklis 1996]

Problem: Most projections lead to backups that
are not contractions and unstable

o

Rewards all zero, single action, y=0.9: V* =0

Consider linear approx. w/ single feature ¢ with weight w.

V (s) =W-¢(s) Optimal w =0
since V*=0

Example: Stability Problem

weight value
d(s,)=1 @ 8(s,)=2 at iteration i
S1)= @ > S,)=
Vi) =W Vi(s,) = 2w/ /
From V' perform projected backup for each state
TNi](Sl) = Ni (S,) =1.8w
TIV'](s,) =V '(s,) =1.8W

Can’t be represented in our space so find w'*! that gives
least-squares approx. to exact backup

After some math we can get: w*l=1.2 w'

What does this mean?

Example: Stability Problem

V(x) V4 lteration #

1 2 : S

Each iteration of Bellman backup makes approximation worse!
Even for this trivial problem “projected” VI diverges.

Understanding the Problem

°* What went wrong?
“ Exact Bellman backups reduces error in max-norm
“ Least squares (= projection) non-expansive in L, norm
m But may increase max-norm distance!

° Conclusion: Alternating Bellman backups and
projection is risky business

<

OK, What’'s LSTD?

° Approximates value function of policy given
trajectories of

* Assumes linear approximation of V™ denoted V
V(s) =D, W (S)

° The ¢, are arbitrary feature functions of states

®* Some vector notation

v (s,) _ Wy 4 (s)

: : ¢k — (D = [¢1

V (Sn) Wk _¢k (Sn)_

I
=
1

Deriving LSTD

N\

V = 0w assigns a value to every state

K basis functions \ \/ is a linear function
p A N in the column space
b1(s1) b,(s1)... ~ of ¢,...¢,, thatis,
91(52) 9(52)... Vo=w, g+ +W, 9,
b= - - # states

_)

Suppose we know true value of policy

° We would like the following: \/ = Pw ~V"”

° Least squares weights minimizes squared error
T 1 AT
w= (D) dV”

—

Sometimes called pseudoinverse

° Least squares projection is then
i TAY-LaT
V =0dw=0(D) d'V”

Hf—/
Textbook least squares projection operator

But we don’t know V...

° Recall fixed-point equation for policies
V7(s) =R(s,7(s)) + 7> P(s'| s, Z(s))V " (s')

* Will solve a projected fixed-point equation:

V7* =H(R+7P\7”)

I R(s,, 7(s,))]

 R(s,, 7? (S.)) |

° Substituting least squares projection into this gives:

. P=

I P(s,|s,, 7(sy)) -

PG, 15,.7(5,)

P(s, | si, 77(31))_

P(Sl | Sn.’ ﬂ(sn))_

DW= D(D' D) D' (R + yPDW)
* Solving forw: W= (®'®— D' PO)"®'R

Almost there...

W= (D' ®—»d'PD)'®'R

°* Matrix to invert is only K x K

° But...
“ Expensive to construct matrix (e.g. P is |S|x]|S]|)
m Presumably we are using LSPI because |S| is enormous
“ We don’t know P
“ We don’t know R

Using Samples for ®©

Suppose we have state transition samples of the policy
running in the MDP: {(s;,a, r;,s;’)}

Idea: Replace enumeration of states with sampled states

K basis functions
- AL

~

(1(s1) y(s1)... A
$1(52) ,(s2)...

S
i

L Sgees

Using Samples for R

Suppose we have state transition samples of the policy
running in the MDP: {(s;,a, r;,s;’)}

Idea: Replace enumeration of reward with sampled rewards

R = | . samples

40

Using Samples for PO

Idea: Replace expectation over next states with sampled

next states.

K basis functions

AN

~

0,(s1”) d,(s1’)...
$,(s2") §,(s2')...

> s’ from (s,a,r,s’)

Putting it Together
° LSTD needs to compute:
W= (D' ®—yd'PO)'®'R=B™b
B=0'®—y®' (PD)
b=d'R |

from previous slide

° The hard part of which is B the kxk matrix:

°* Both B and b can be computed incrementally for
each (s,a,r,s’) sample: (initialize to zero)

B < B, +4(5)¢;(s) —»#(5)9,;(s")
b« b +r-4(s)

LSTD Algorithm

° Collect data by executing trajectories of current policy

° For each (s,a,r,s’) sample:

B < B, +4(5)¢;(s)—»#(5)9;(s")
b« b +r-¢4(s,a)

w<« B™b

LSTD Summary

° Does O(k?) work per datum
“ Linear in amount of data.

* Approaches model-based answer in limit

° Finding fixed point requires inverting matrix

° Fixed point almost always exists

° Stable; efficient

Approximate Policy Iteration with LSTD

Policy lteration: iterates between policy improvement
and policy evaluation

Idea: use LSTD for approximate policy evaluation in Pl

Start with random weights w (i.e. value function)

Repeat Until Convergence

T (S)= greedy(\f (S, W)) // policy improvement

Evaluate 7 using LSTD
m Generate sample trajectories of 7

m Use LSTD to produce new weights w
(w gives an approx. value function of 1)

What Breaks?

° No way to execute greedy policy without a model

° Approximation is biased by current policy

“ We only approximate values of states we see when
executing the current policy

“~ LSTD is a weighted approximation toward those states

° Can result in Learn-forget cycle of policy iteration
“ Drive off the road; learn that it’s bad

“ New policy never does this; forgets that it’s bad

° Not truly a batch method
“ Data must be collected from current policy for LSTD

LSPI

° LSPI is similar to previous loop but replaces LSTD
with a new algorithm LSTDQ

° LSTD: produces a value function
“ Requires samples from policy under consideration

° LSTDQ: produces a Q-function for current policy

“ Can learn Q-function for policy from any (reasonable) set
of samples---sometimes called an off-policy method

“ No need to collect samples from current policy

° Disconnects policy evaluation from data collection
“ Permits reuse of data across iterations!
“ Truly a batch method.

