Batch Reinforcement Learning

Alan Fern

* Based in part on slides by Ronald Parr

Overview

• What is batch reinforcement learning?

Least Squares Policy Iteration

Fitted Q-iteration

Batch DQN

Online versus Batch RL

- Online RL: integrates data collection and optimization
 - Select actions in environment and at the same time update parameters based on each observed (s,a,s',r)
- Batch RL: decouples data collection and optimization
 - First generate/collect experience in the environment giving a data set of state-action-reward-state pairs {(s_i,a_i,r_i,s_i')}
 - We may not even know where the data came from
 - Use the fixed set of experience to optimize/learn a policy
- Online vs. Batch:
 - Batch algorithms are often more "data efficient" and stable
 - Batch algorithms ignore the exploration-exploitation problem, and do their best with the data they have

Batch RL Motivation

 There are many applications that naturally fit the batch RL model

Medical Treatment Optimization:

- <u>Input:</u> collection of treatment episodes for an ailment giving sequence of observations and actions including outcomes
- <u>Ouput:</u> a treatment policy, ideally better than current practice

• Emergency Response Optimization:

- <u>Input:</u> collection of emergency response episodes giving movement of emergency resources before, during, and after 911 calls
- Output: emergency response policy

Batch RL Motivation

Online Education Optimization:

- <u>Input</u>: collection of episodes of students interacting with an educational system that gives information and questions in order to teach a topic
 - Actions correspond to giving the student some information or giving them a question of a particular difficulty and topic
- <u>Ouput</u>: a teaching policy that is tuned to student based on what is known about the student

Least Squares Policy Iteration (LSPI)

- LSPI is a model-free batch RL algorithm
 - Learns a linear approximation of Q-function
 - stable and efficient
 - Never diverges or gives meaningless answers
- LSPI can be applied to a dataset regardless of how it was collected
 - But garbage in, garbage out.

<u>Least-Squares Policy Iteration</u>, Michail Lagoudakis and Ronald Parr, *Journal of Machine Learning Research (JMLR)*, Vol. 4, 2003, pp. 1107-1149.

Least Squares Policy iteration

- No time to cover details of derivation
 - Details are in the appendix of these slides
- LSPI is a wrapper around an algorithm LSTDQ
- LSTDQ: learns a Q-function for current policy given the batch of data
 - Can learn Q-function for policy from any (reasonable) set of samples---sometimes called an off-policy method
 - No need to collect samples from current policy
- Disconnects policy evaluation from data collection
 - Permits reuse of data across iterations!
 - Truly a batch method.

Implementing LSTDQ

• LSTDQ uses a linear Q-function with features ϕ_k and weights w_k .

$$\hat{Q}_{w}(s,a) = \sum_{k} w_{k} \cdot \phi_{k}(s,a)$$

defines greedy policy: $\pi_{w}(s) = \arg \max_{a} \hat{Q}_{w}(s,a)$

• For each (s,a,r,s') sample in data set:

$$B_{ij} \leftarrow B_{ij} + \phi_i(s,a)\phi_j(s,a) - \lambda\phi_i(s,a)\phi_j(s',\pi_w(s'))$$

$$b_i \leftarrow b_i + r \cdot \phi_i(s,a)$$

$$w \leftarrow B^{-1}b$$

$$\arg\max_a \hat{Q}_w(s',a)$$

Running LSPI

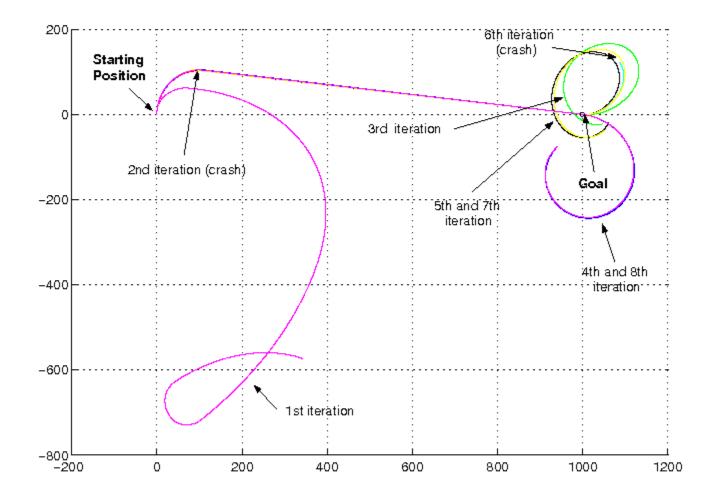
- There is a Matlab implementation available!
- Collect a database of (s,a,r,s') experiences (this is the magic step)
- 2. Start with random weights (= random policy)
- 3. Repeat
 - Evaluate current policy against database
 - Run LSTDQ to generate new set of weights
 - New weights imply new Q-function and hence new policy
 - Replace current weights with new weights
 - Until convergence

Results: Bicycle Riding

- Watch random controller operate simulated bike
- Collect ~40,000 (s,a,r,s') samples
- Pick 20 simple feature functions (×5 actions)
- Make 5-10 passes over data (PI steps)
- Reward was based on distance to goal + goal achievement
- Result:

Controller that balances and rides to goal

Bicycle Trajectories

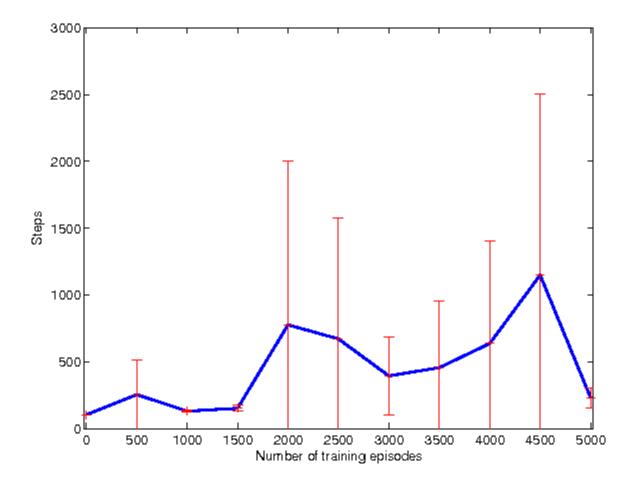


What about Q-learning?

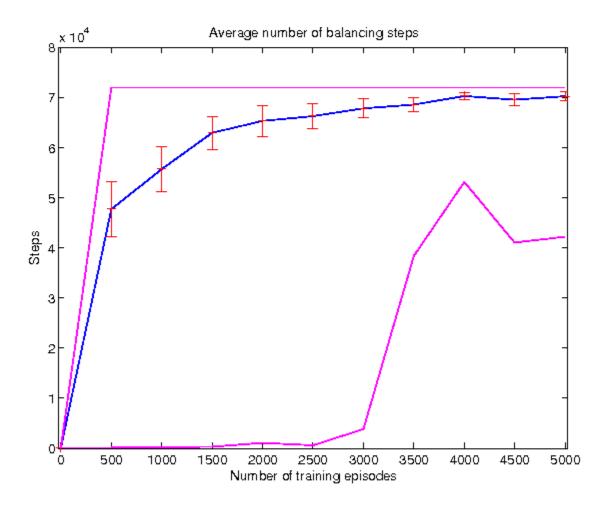
Ran Q-learning with same features

Used experience replay for data efficiency

Q-learning Results



LSPI Robustness



Some key points

- LSPI is a batch RL algorithm
 - Can generate trajectory data anyway you want
 - Induces a policy based on global optimization over full dataset
- Very stable with no parameters that need tweaking

So, what's the bad news?

- LSPI does not address the exploration problem
 - It decouples data collection from policy optimization
 - This is often not a major issue, but can be in some cases
- k² can sometimes be big
 - Lots of storage
 - Matrix inversion can be expensive
- Bicycle needed "shaping" rewards
- Still haven't solved
 - Feature selection (issue for all machine learning, but RL seems even more sensitive)

Fitted Q-Iteration

- LSPI is limited to linear functions over a given set of features
- Fitted Q-Iteration allows us to use any type of function approximator for the Q-function
 - Random Forests have been popular
 - Deep Networks
- Fitted Q-Iteration is a very straightforward batch version of Q-learning

Damien Ernst, Pierre Geurts, Louis Wehenkel. (2005). **Tree-Based Batch Mode Reinforcement Learning** *Journal of Machine Learning Research*; 6(Apr):503—556.

Fitted Q-Iteration

- 1. Let $D = \{(s_i, a_i, r_i, s'_i)\}\$ be our batch of transitions
- 2. Initialize approximate Q-function \hat{Q}_{θ} (perhaps weights of a deep network)
- 3. Initialize training set $T = \emptyset$
- 4. For each $(s_i, a_i, r_i, s'_i) \in D$
 - $\hat{q}_i = (r_i + B \max_{a'} \hat{Q}_{\theta}(s'_i, a'))$ // new estimate of $Q(s_i, a_i)$
 - Add training example $\langle (s_i, a_i), \hat{q}_i \rangle$ to T
- 5. Learn new \hat{Q}_{θ} from training data T
- 6. Goto 3

Step 5 could use any regression algorithm: neural network, random forests, support vector regression, Gaussian Process

DQN

 DQN was developed by DeepMind originally for online learning of Atari games

 However, the algorithm can be used effectively as is for Batch RL.

• I haven't seen this done, but it is straightforward.

DQN for Batch RL

- 1. Let $D = \{(s_i, a_i, r_i, s'_i)\}\$ be our batch of transitions
- 2. Initialize neural network parameter values to θ
- 3. Randomly sample a mini-batch of *B* transition $\{(s_k, a_k, r_k, s'_k)\}$ from *D*
- 4. Perform a TD update for each parameter based on mini-batch $\theta \leftarrow \theta + \alpha \sum_{k} \left(r_k + B \max_{a'} \hat{Q}_{\theta}(s'_k, a') - \hat{Q}_{\theta}(s_k, a_k) \right) \nabla_{\theta} Q(s_k, a_k)$
- 5. Goto 3

Projection Approach to Approximation

• Recall the standard Bellman equation:

$$V^{*}(s) = \max_{a} R(s, a) + \gamma \sum_{s'} P(s'|s, a) V^{*}(s')$$

or equivalently $V^* = T[V^*]$ where T[.] is the Bellman operator

• Recall from value iteration, the sub-optimality of a value function can be bounded in terms of the Bellman error: W = T[V]

$$\left\| V - T[V] \right\|_{\infty}$$

 This motivates trying to find an approximate value function with small Bellman error

Projection Approach to Approximation

- Suppose that we have a space of representable value functions
 - E.g. the space of linear functions over given features
- Let Π be a *projection* operator for that space
 - Projects any value function (in or outside of the space) to "closest" value function in the space
- "Fixed Point" Bellman Equation with approximation $\hat{V}^* = \prod (T[\hat{V}^*])$

Depending on space this will have a small Bellman error

• LSPI will attempt to arrive at such a value function

Assumes linear approximation and least-squares projection

Projected Value Iteration

- Naïve Idea: try computing projected fixed point using VI
- Exact VI: (iterate Bellman backups)

 $V^{i+1} = T[V^i]$

Projected VI: (iterated projected Bellman backups):

$$\hat{V}^{i+1} = \prod \left(T[\hat{V}^i] \right)$$

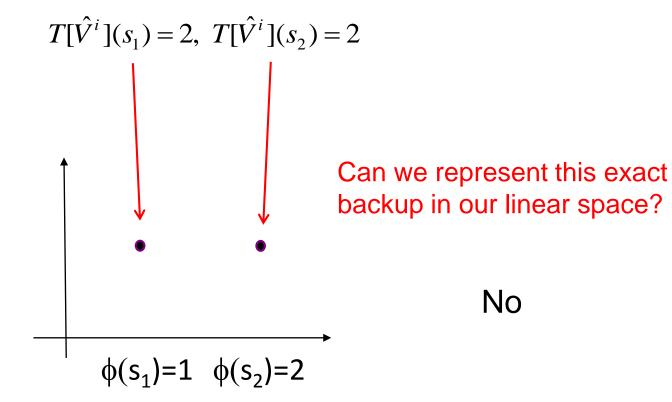
Projects exact Bellman backup to closest function in our restricted function space

exact Bellman backup (produced value function)

Example: Projected Bellman Backup

Restrict space to linear functions over a single feature ϕ : $\hat{V}(s) = w \cdot \phi(s)$

Suppose just two states s_1 and s_2 with: $\phi(s_1)=1$, $\phi(s_2)=2$ Suppose exact backup of Vⁱ gives:



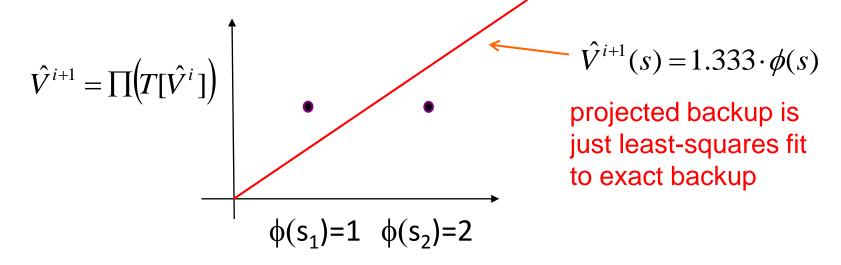
Example: Projected Bellman Backup

Restrict space to linear functions over a single feature ϕ : $\hat{V}(s) = w \cdot \phi(s)$

Suppose just two states s_1 and s_2 with: $\phi(s_1)=1$, $\phi(s_2)=2$ Suppose exact backup of Vⁱ gives:

 $T[\hat{V}^i](s_1) = 2, \ T[\hat{V}^i](s_2) = 2$

The backup can't be represented via our linear function:



Problem: Stability

• Exact value iteration stability ensured by contraction property of Bellman backups:

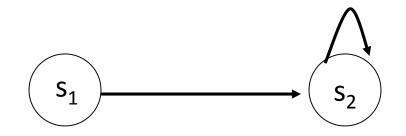
$$V^{i+1} = T[V^i]$$

• Is the "projected" Bellman backup a contraction:

$$\hat{V}^{i+1} = \prod \left(T[\hat{V}^i] \right)$$

Example: Stability Problem [Bertsekas & Tsitsiklis 1996]

Problem: Most projections lead to backups that are not contractions and unstable



Rewards all zero, single action, $\gamma = 0.9$: V* = 0

Consider linear approx. w/ single feature ϕ with weight w.

 $\hat{V}(s) = w \cdot \phi(s)$ Optimal w = 0 since V*=0

Example: Stability Problem $\phi(s_1)=1$ s_1 $\phi(s_2)=2$ $\psi(s_2)=2w^i$ $\psi(s_2)=2w^i$

From Vⁱ perform projected backup for each state $T[\hat{V}^i](s_1) = \gamma \hat{V}^i(s_2) = 1.8w^i$ $T[\hat{V}^i](s_2) = \gamma \hat{V}^i(s_2) = 1.8w^i$

Can't be represented in our space so find wⁱ⁺¹ that gives least-squares approx. to exact backup

After some math we can get: **w**ⁱ⁺¹ = **1.2 w**ⁱ

What does this mean?

Example: Stability Problem



Each iteration of Bellman backup makes approximation worse! Even for this trivial problem "projected" VI diverges.

Understanding the Problem

- What went wrong?
 - Exact Bellman backups reduces error in max-norm
 - Least squares (= projection) non-expansive in L_2 norm
 - But may increase max-norm distance!

 Conclusion: Alternating Bellman backups and projection is risky business

OK, What's LSTD?

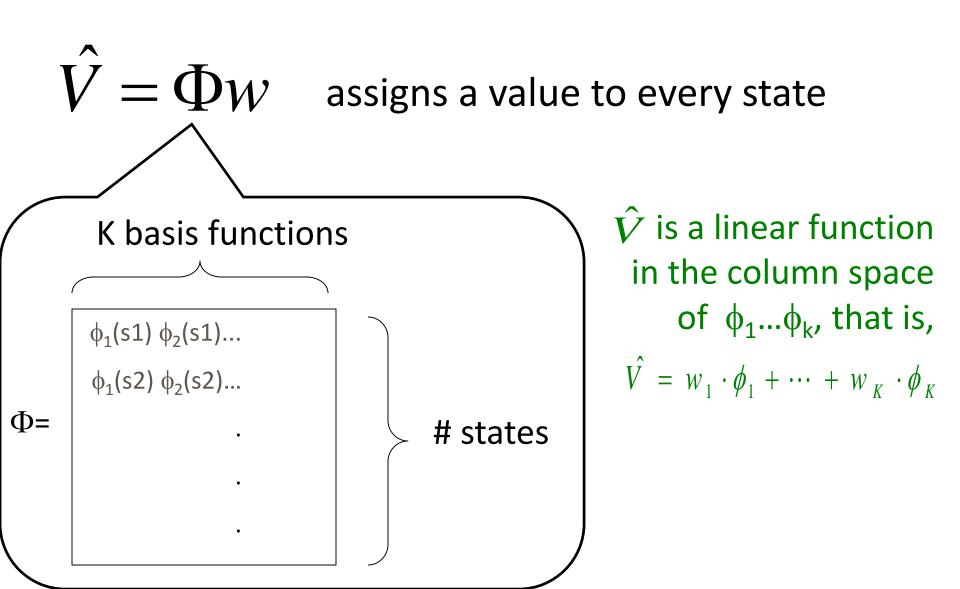
- Approximates value function of policy π given trajectories of π
- Assumes linear approximation of V^{π} denoted \hat{V}

$$\hat{V}(s) = \sum_{k} w_k \phi_k(s)$$

- The φ_k are arbitrary feature functions of states
- Some vector notation

$$\hat{V} = \begin{bmatrix} \hat{V}(s_1) \\ \vdots \\ \hat{V}(s_n) \end{bmatrix} \quad w = \begin{bmatrix} w_1 \\ \vdots \\ w_k \end{bmatrix} \quad \phi_k = \begin{bmatrix} \phi_k(s_1) \\ \vdots \\ \phi_k(s_n) \end{bmatrix} \quad \Phi = \begin{bmatrix} \phi_1 & \cdots & \phi_K \end{bmatrix}$$

Deriving LSTD



Suppose we know true value of policy

- We would like the following: $\hat{V} = \Phi_{\mathcal{W}} pprox V^{\pi}$
- Least squares weights minimizes squared error $w = (\Phi^T \Phi)^{-1} \Phi^T V^{\pi}$

Sometimes called pseudoinverse

Least squares projection is then

$$\hat{V} = \Phi W = \Phi (\Phi^T \Phi)^{-1} \Phi^T V^{\pi}$$

Textbook least squares projection operator

But we don't know V...

- Recall fixed-point equation for policies $V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s'} P(s'|s, \pi(s)) V^{\pi}(s')$
- Will solve a projected fixed-point equation:

$$\hat{V}^{\pi} = \prod \left(R + \gamma P \hat{V}^{\pi} \right)$$

$$R = \begin{bmatrix} R(s_1, \pi(s_1)) \\ \vdots \\ R(s_n, \pi(s_n)) \end{bmatrix}, P = \begin{bmatrix} P(s_1 | s_1, \pi(s_1)) & \cdots & P(s_n | s_1, \pi(s_1)) \\ \vdots & \vdots \\ P(s_1 | s_n, \pi(s_n)) & \cdots & P(s_1 | s_n, \pi(s_n)) \end{bmatrix}$$

• Substituting least squares projection into this gives: $\Phi w = \Phi (\Phi^T \Phi)^{-1} \Phi^T (R + \gamma P \Phi w)$

• Solving for w: $w = (\Phi^T \Phi - \gamma \Phi^T P \Phi)^{-1} \Phi^T R$

Almost there...

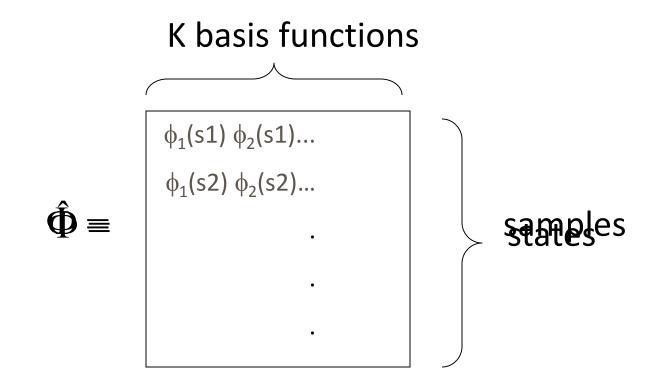
$$w = (\Phi^T \Phi - \gamma \Phi^T P \Phi)^{-1} \Phi^T R$$

- Matrix to invert is only K x K
- But...
 - Expensive to construct matrix (e.g. P is |S|x|S|)
 - Presumably we are using LSPI because |S| is enormous
 - We don't know P
 - We don't know R

Using Samples for Φ

Suppose we have state transition samples of the policy running in the MDP: {(s_i,a_i,r_i,s_i')}

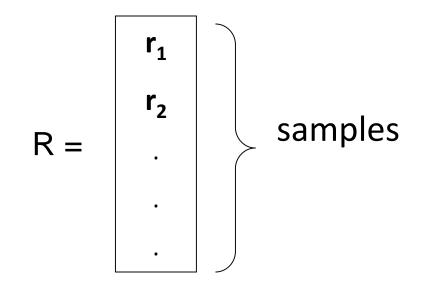
Idea: Replace enumeration of states with sampled states



Using Samples for R

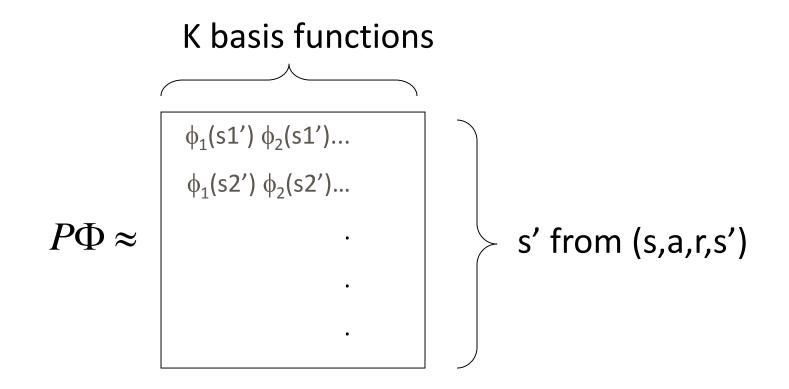
Suppose we have state transition samples of the policy running in the MDP: {(s_i,a_i,r_i,s_i')}

Idea: Replace enumeration of reward with sampled rewards



Using Samples for $P\Phi$

Idea: Replace expectation over next states with sampled next states.



Putting it Together

• LSTD needs to compute:

$$w = (\Phi^{T} \Phi - \gamma \Phi^{T} P \Phi)^{-1} \Phi^{T} R = B^{-1} b$$
$$B = \Phi^{T} \Phi - \gamma \Phi^{T} (P \Phi)$$
$$b = \Phi^{T} R$$
from previous slide

- The hard part of which is *B* the kxk matrix:
- Both B and b can be computed incrementally for each (s,a,r,s') sample: (initialize to zero)

$$B_{ij} \leftarrow B_{ij} + \phi_i(s)\phi_j(s) - \gamma\phi_i(s)\phi_j(s')$$
$$b_i \leftarrow b_i + r \cdot \phi_i(s)$$

LSTD Algorithm

- Collect data by executing trajectories of current policy
- For each (s,a,r,s') sample:

$$B_{ij} \leftarrow B_{ij} + \phi_i(s)\phi_j(s) - \gamma\phi_i(s)\phi_j(s')$$
$$b_i \leftarrow b_i + r \cdot \phi_i(s, a)$$
$$w \leftarrow B^{-1}b$$

LSTD Summary

- Does O(k²) work per datum
 Linear in amount of data.
- Approaches model-based answer in limit
- Finding fixed point requires inverting matrix

- Fixed point almost always exists
- Stable; efficient

Approximate Policy Iteration with LSTD

Policy Iteration: iterates between policy improvement and policy evaluation

Idea: use LSTD for approximate policy evaluation in PI

Start with random weights w (i.e. value function)

Repeat Until Convergence

 $\pi(s) = \operatorname{greedy}(\hat{V}(s, \mathbf{w})) / \text{policy improvement}$

Evaluate π using LSTD

- Generate sample trajectories of π
- Use LSTD to produce new weights w
 (w gives an approx. value function of π)

What Breaks?

- No way to execute greedy policy without a model
- Approximation is biased by current policy
 - We only approximate values of states we see when executing the current policy
 - LSTD is a weighted approximation toward those states
- Can result in Learn-forget cycle of policy iteration
 - Drive off the road; learn that it's bad
 - New policy never does this; forgets that it's bad
- Not truly a batch method
 - Data must be collected from current policy for LSTD

LSPI

- LSPI is similar to previous loop but replaces LSTD with a new algorithm LSTDQ
- LSTD: produces a value function
 - Requires samples from policy under consideration
- LSTDQ: produces a Q-function for current policy
 - Can learn Q-function for policy from any (reasonable) set of samples---sometimes called an off-policy method
 - No need to collect samples from current policy
- Disconnects policy evaluation from data collection
 - Permits reuse of data across iterations!
 - Truly a batch method.