
Batch Reinforcement Learning

Alan Fern

* Based in part on slides by Ronald Parr

Overview

What is batch reinforcement learning?

Least Squares Policy Iteration

Fitted Q-iteration

Batch DQN

Online versus Batch RL

Online RL: integrates data collection and optimization

Select actions in environment and at the same time update
parameters based on each observed (s,a,s’,r)

 Batch RL: decouples data collection and optimization

First generate/collect experience in the environment giving a
data set of state-action-reward-state pairs {(si,ai,ri,si’)}

We may not even know where the data came from

Use the fixed set of experience to optimize/learn a policy

Online vs. Batch:

Batch algorithms are often more “data efficient” and stable

Batch algorithms ignore the exploration-exploitation
problem, and do their best with the data they have

Batch RL Motivation

There are many applications that naturally fit the batch
RL model

Medical Treatment Optimization:

 Input: collection of treatment episodes for an ailment giving
sequence of observations and actions including outcomes

Ouput: a treatment policy, ideally better than current practice

Emergency Response Optimization:

 Input: collection of emergency response episodes giving
movement of emergency resources before, during, and after
911 calls

Output: emergency response policy

Batch RL Motivation

Online Education Optimization:

 Input: collection of episodes of students interacting with an
educational system that gives information and questions in
order to teach a topic

 Actions correspond to giving the student some information
or giving them a question of a particular difficulty and topic

Ouput: a teaching policy that is tuned to student based on
what is known about the student

Least Squares Policy Iteration (LSPI)

LSPI is a model-free batch RL algorithm

Learns a linear approximation of Q-function

stable and efficient

Never diverges or gives meaningless answers

LSPI can be applied to a dataset regardless of how
it was collected

But garbage in, garbage out.

Least-Squares Policy Iteration, Michail Lagoudakis and Ronald

Parr, Journal of Machine Learning Research (JMLR), Vol. 4,
2003, pp. 1107-1149.

http://www.cs.duke.edu/~parr/jmlr03.pdf

Least Squares Policy iteration

No time to cover details of derivation

Details are in the appendix of these slides

LSPI is a wrapper around an algorithm LSTDQ

LSTDQ: learns a Q-function for current policy given
the batch of data

Can learn Q-function for policy from any (reasonable) set
of samples---sometimes called an off-policy method

No need to collect samples from current policy

Disconnects policy evaluation from data collection

Permits reuse of data across iterations!

Truly a batch method.

Implementing LSTDQ

LSTDQ uses a linear Q-function with features 𝜙𝑘 and
weights 𝑤𝑘.

defines greedy policy:

For each (s,a,r,s’) sample in data set:

))'(,'(),(),(),(ssasasasBB wjijiijij  

),(asrbb iii 

bBw 1

 
k

kkw aswasQ),(),(ˆ 

),'(ˆmaxarg asQwa

),(ˆmaxarg)(asQs waw 

Running LSPI

There is a Matlab implementation available!

1. Collect a database of (s,a,r,s’) experiences
(this is the magic step)

2. Start with random weights (= random policy)

3. Repeat

Evaluate current policy against database

 Run LSTDQ to generate new set of weights

 New weights imply new Q-function and hence new
policy

Replace current weights with new weights

Until convergence

Results: Bicycle Riding

Watch random controller operate simulated bike

Collect ~40,000 (s,a,r,s’) samples

Pick 20 simple feature functions (5 actions)

Make 5-10 passes over data (PI steps)

Reward was based on distance to goal + goal
achievement

Result:
Controller that balances and rides to goal

Bicycle Trajectories

What about Q-learning?

Ran Q-learning with same features

Used experience replay for data efficiency

Q-learning Results

LSPI Robustness

Some key points

LSPI is a batch RL algorithm

Can generate trajectory data anyway you want

 Induces a policy based on global optimization over
full dataset

Very stable with no parameters that need
tweaking

So, what’s the bad news?

LSPI does not address the exploration problem

 It decouples data collection from policy optimization

This is often not a major issue, but can be in some cases

k2 can sometimes be big

Lots of storage

Matrix inversion can be expensive

Bicycle needed “shaping” rewards

Still haven’t solved

Feature selection (issue for all machine learning, but RL
seems even more sensitive)

Fitted Q-Iteration

LSPI is limited to linear functions over a given set of
features

Fitted Q-Iteration allows us to use any type of
function approximator for the Q-function

Random Forests have been popular

Deep Networks

Fitted Q-Iteration is a very straightforward batch
version of Q-learning

Damien Ernst, Pierre Geurts, Louis Wehenkel. (2005).

Tree-Based Batch Mode Reinforcement Learning

Journal of Machine Learning Research; 6(Apr):503—556.

Fitted Q-Iteration

1. Let 𝐷 = 𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖
′ } be our batch of transitions

2. Initialize approximate Q-function 𝑄𝜃
(perhaps weights of a deep network)

3. Initialize training set 𝑇 = ∅

4. For each 𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖
′ ∈ 𝐷

 𝑞𝑖 = (𝑟𝑖 + Βmax
𝑎′

 𝑄𝜃 𝑠𝑖
′, 𝑎′ // new estimate of 𝑄 𝑠𝑖 , 𝑎𝑖

 Add training example 〈 𝑠𝑖 , 𝑎𝑖 , 𝑞𝑖〉 to T

5. Learn new 𝑄𝜃 from training data 𝑇

6. Goto 3

Step 5 could use any regression algorithm: neural network,
random forests, support vector regression, Gaussian Process

DQN

DQN was developed by DeepMind originally for
online learning of Atari games

However, the algorithm can be used effectively as is
for Batch RL.

 I haven’t seen this done, but it is straightforward.

DQN for Batch RL

1. Let 𝐷 = 𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖
′ } be our batch of transitions

2. Initialize neural network parameter values to 𝜃

3. Randomly sample a mini-batch of 𝐵 transition { 𝑠𝑘 , 𝑎𝑘 , 𝑟𝑘 , 𝑠𝑘
′ }

from 𝐷

4. Perform a TD update for each parameter based on mini-batch

𝜃 ← 𝜃 + 𝛼

𝑘

𝑟𝑘 + Βmax
𝑎′

 𝑄𝜃 𝑠𝑘
′ , 𝑎′ − 𝑄𝜃 𝑠𝑘 , 𝑎𝑘 𝛻𝜃 𝑄 𝑠𝑘 , 𝑎𝑘

5. Goto 3

Appendix

21

Projection Approach to Approximation

Recall the standard Bellman equation:

or equivalently where T[.] is the
Bellman operator

Recall from value iteration, the sub-optimality of a
value function can be bounded in terms of the
Bellman error:

This motivates trying to find an approximate value
function with small Bellman error


'

**)'(),|'(),(max)(
sa sVassPasRsV 

][** VTV 


][VTV

Projection Approach to Approximation

Suppose that we have a space of representable value
functions

E.g. the space of linear functions over given features

Let P be a projection operator for that space

Projects any value function (in or outside of the space) to
“closest” value function in the space

“Fixed Point” Bellman Equation with approximation

Depending on space this will have a small Bellman error

LSPI will attempt to arrive at such a value function

Assumes linear approximation and least-squares projection

 ]ˆ[ˆ ** VTV 

Projected Value Iteration
Naïve Idea: try computing projected fixed point using VI

Exact VI: (iterate Bellman backups)

Projected VI: (iterated projected Bellman backups):

][1 ii VTV 

 ]ˆ[ˆ 1 ii VTV 

exact Bellman backup

(produced value function)

Projects exact Bellman

backup to closest function

in our restricted function space

Example: Projected Bellman Backup

Restrict space to linear functions over a single feature :

Suppose just two states s1 and s2 with:
Suppose exact backup of Vi gives:

s1)=1 s2)=2

)()(ˆ swsV 

2)](ˆ[,2)](ˆ[21  sVTsVT ii

s1)=1, s2)=2

Can we represent this exact

backup in our linear space?

No

Example: Projected Bellman Backup

Restrict space to linear functions over a single feature :

Suppose just two states s1 and s2 with:
Suppose exact backup of Vi gives:

The backup can’t be represented via our linear function:

s1)=1 s2)=2

)()(ˆ swsV 

 ]ˆ[ˆ 1 ii VTV 

2)](ˆ[,2)](ˆ[21  sVTsVT ii

s1)=1, s2)=2

projected backup is

just least-squares fit

to exact backup

)(333.1)(ˆ 1 ssV i 

Problem: Stability

Exact value iteration stability ensured by
contraction property of Bellman backups:

 Is the “projected” Bellman backup a contraction:

?

][1 ii VTV 

 ]ˆ[ˆ 1 ii VTV 

Example: Stability Problem [Bertsekas & Tsitsiklis 1996]

Problem: Most projections lead to backups that
are not contractions and unstable

s2
s1

Rewards all zero, single action,  = 0.9: V* = 0

Consider linear approx. w/ single feature  with weight w.

)()(ˆ swsV  Optimal w = 0

since V*=0

Example: Stability Problem

From Vi perform projected backup for each state

Can’t be represented in our space so find wi+1 that gives
least-squares approx. to exact backup

After some math we can get: wi+1 = 1.2 wi

What does this mean?

iii wsVsVT 8.1)(ˆ)](ˆ[21  

iii wsVsVT 8.1)(ˆ)](ˆ[22  

s2
s1

s1)=1
Vi(s1) = wi

s2)=2
Vi(s2) = 2wi

weight value

at iteration i

Example: Stability Problem

1 2

Iteration #

S

V(x)

0V̂

3V̂

2V̂
1V̂

Each iteration of Bellman backup makes approximation worse!

Even for this trivial problem “projected” VI diverges.

Understanding the Problem

What went wrong?

Exact Bellman backups reduces error in max-norm

Least squares (= projection) non-expansive in L2 norm

 But may increase max-norm distance!

Conclusion: Alternating Bellman backups and
projection is risky business

OK, What’s LSTD?

Approximates value function of policy 𝜋 given
trajectories of 𝜋

Assumes linear approximation of 𝑉𝜋 denoted 𝑉

The k are arbitrary feature functions of states

Some vector notation


k kk swsV)()(ˆ 



















)(ˆ

)(ˆ

ˆ
1

nsV

sV

V 



















kw

w

w 
1



















)(

)(1

nk

k

k

s

s





   K 1

Deriving LSTD

is a linear function
in the column space

of 1…k, that is,

wV ˆ

K basis functions

states

1(s1) 2(s1)...

1(s2) 2(s2)…

.

.

.

=

assigns a value to every state

V̂

KKwwV   11
ˆ

Suppose we know true value of policy

We would like the following:

Least squares weights minimizes squared error

Least squares projection is then

VwV ˆ

Vw TT  1)(

Textbook least squares projection operator

VwV TT  1)(ˆ

Sometimes called pseudoinverse

But we don’t know V…

Recall fixed-point equation for policies

Will solve a projected fixed-point equation:

Substituting least squares projection into this gives:

Solving for w:

   VPRV ˆˆ 

 wPRw TT   1)(

RPw TTT  1)(





































))(,|())(,|(

))(,|())(,|(

,

))(,(

))(,(

11

1111111

nnnn

n

nn sssPsssP

sssPsssP

P

ssR

ssR

R


















'

)'())(,|'())(,()(
s

sVsssPssRsV  

Almost there…

Matrix to invert is only K x K

But…

Expensive to construct matrix (e.g. P is |S|x|S|)

 Presumably we are using LSPI because |S| is enormous

We don’t know P

We don’t know R

RPw TTT  1)(

Using Samples for 

K basis functions

1(s1) 2(s1)...

1(s2) 2(s2)…

.

.

.

Idea: Replace enumeration of states with sampled states

states samples̂

Suppose we have state transition samples of the policy
running in the MDP: {(si,ai,ri,si’)}

Using Samples for R

r1

r2

.

.

.

Idea: Replace enumeration of reward with sampled rewards

samples

Suppose we have state transition samples of the policy
running in the MDP: {(si,ai,ri,si’)}

R =

40

Using Samples for P

K basis functions

1(s1’) 2(s1’)...

1(s2’) 2(s2’)…

.

.

.

Idea: Replace expectation over next states with sampled
next states.

s’ from (s,a,r,s’)P

Putting it Together

LSTD needs to compute:

The hard part of which is B the kxk matrix:

Both B and b can be computed incrementally for
each (s,a,r,s’) sample: (initialize to zero)

bBRPw TTT 11)(  

)( PB TT 

)'()()()(ssssBB jijiijij  

)(srbb iii 

Rb T from previous slide

LSTD Algorithm

Collect data by executing trajectories of current policy

For each (s,a,r,s’) sample:

bBw 1

)'()()()(ssssBB jijiijij  

),(asrbb iii 

LSTD Summary
Does O(k2) work per datum

Linear in amount of data.

Approaches model-based answer in limit

Finding fixed point requires inverting matrix

Fixed point almost always exists

Stable; efficient

Approximate Policy Iteration with LSTD

Start with random weights w (i.e. value function)

Repeat Until Convergence

Evaluate using LSTD

 Generate sample trajectories of

 Use LSTD to produce new weights w
(w gives an approx. value function of)

)(s = greedy() // policy improvement),(ˆ wsV







Policy Iteration: iterates between policy improvement

and policy evaluation

Idea: use LSTD for approximate policy evaluation in PI

What Breaks?

No way to execute greedy policy without a model

Approximation is biased by current policy

We only approximate values of states we see when
executing the current policy

LSTD is a weighted approximation toward those states

Can result in Learn-forget cycle of policy iteration

Drive off the road; learn that it’s bad

New policy never does this; forgets that it’s bad

Not truly a batch method

Data must be collected from current policy for LSTD

LSPI

LSPI is similar to previous loop but replaces LSTD
with a new algorithm LSTDQ

LSTD: produces a value function

Requires samples from policy under consideration

LSTDQ: produces a Q-function for current policy

Can learn Q-function for policy from any (reasonable) set
of samples---sometimes called an off-policy method

No need to collect samples from current policy

Disconnects policy evaluation from data collection

Permits reuse of data across iterations!

Truly a batch method.

