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Overview

What is batch reinforcement learning? 

Least Squares Policy Iteration

Fitted Q-iteration

Batch DQN



Online versus Batch RL

Online RL: integrates data collection and optimization

Select actions in environment and at the same time update 
parameters based on each observed (s,a,s’,r)

 Batch RL: decouples data collection and optimization

First generate/collect experience in the environment giving a 
data set of state-action-reward-state pairs {(si,ai,ri,si’)}

We may not even know where the data came from

Use the fixed set of experience to optimize/learn a policy

Online vs. Batch:

Batch algorithms are often more “data efficient” and stable

Batch algorithms ignore the exploration-exploitation 
problem, and do their best with the data they have



Batch RL Motivation

There are many applications that naturally fit the batch 
RL model

Medical Treatment Optimization:

 Input: collection of treatment episodes for an ailment giving 
sequence of observations and actions including outcomes

Ouput: a treatment policy, ideally better than current practice 

Emergency Response Optimization:

 Input: collection of emergency response episodes giving 
movement of emergency resources before, during, and after 
911 calls

Output: emergency response policy



Batch RL Motivation

Online Education Optimization:

 Input: collection of episodes of students interacting with an 
educational system that gives information and questions in 
order to teach a topic

 Actions correspond to giving the student some information 
or giving them a question of a particular difficulty and topic

Ouput: a teaching policy that is tuned to student based on 
what is known about the student



Least Squares Policy Iteration (LSPI)

LSPI is a model-free batch RL algorithm

Learns a linear approximation of Q-function

stable and efficient

Never diverges or gives meaningless answers

LSPI can be applied to a dataset regardless of how 
it was collected

But garbage in, garbage out.

Least-Squares Policy Iteration, Michail Lagoudakis and Ronald 

Parr, Journal of Machine Learning Research (JMLR), Vol. 4, 
2003, pp. 1107-1149.

http://www.cs.duke.edu/~parr/jmlr03.pdf


Least Squares Policy iteration

No time to cover details of derivation

Details are in the appendix of these slides

LSPI is a wrapper around an algorithm LSTDQ

LSTDQ:  learns a Q-function for current policy given 
the batch of data

Can learn Q-function for policy from any (reasonable) set 
of samples---sometimes called an off-policy method

No need to collect samples from current policy

Disconnects policy evaluation from data collection

Permits reuse of data across iterations!

Truly a batch method.



Implementing LSTDQ

LSTDQ uses a linear Q-function with features 𝜙𝑘 and 
weights 𝑤𝑘.

defines greedy policy: 

For each (s,a,r,s’) sample in data set: 
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Running LSPI

There is a Matlab implementation available!

1. Collect a database of (s,a,r,s’) experiences 
(this is the magic step)

2. Start with random weights (= random policy)

3. Repeat

Evaluate current policy against database

 Run LSTDQ to generate new set of weights

 New weights imply new Q-function and hence new 
policy

Replace current weights with new weights

Until convergence



Results:  Bicycle Riding

Watch random controller operate simulated bike

Collect ~40,000 (s,a,r,s’) samples 

Pick 20 simple feature functions (5 actions)

Make 5-10 passes over data (PI steps)

Reward was based on distance to goal + goal 
achievement

Result:
Controller that balances and rides to goal



Bicycle Trajectories



What about Q-learning?

Ran Q-learning with same features

Used experience replay for data efficiency 



Q-learning Results



LSPI Robustness



Some key points

LSPI is a batch RL algorithm

Can generate trajectory data anyway you want

 Induces a policy based on global optimization over 
full dataset

Very stable with no parameters that need 
tweaking



So, what’s the bad news?

LSPI does not address the exploration problem

 It decouples data collection from policy optimization

This is often not a major issue, but can be in some cases

k2 can sometimes be big

Lots of storage

Matrix inversion can be expensive

Bicycle needed “shaping” rewards

Still haven’t solved

Feature selection (issue for all machine learning, but RL 
seems even more sensitive)



Fitted Q-Iteration

LSPI is limited to linear functions over a given set of 
features

Fitted Q-Iteration allows us to use any type of 
function approximator for the Q-function

Random Forests have been popular

Deep Networks

Fitted Q-Iteration is a very straightforward batch 
version of Q-learning

Damien Ernst, Pierre Geurts, Louis Wehenkel. (2005). 

Tree-Based Batch Mode Reinforcement Learning 

Journal of Machine Learning Research; 6(Apr):503—556.



Fitted Q-Iteration

1. Let 𝐷 = 𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖
′ } be our batch of transitions 

2. Initialize approximate Q-function  𝑄𝜃
(perhaps weights of a deep network)

3. Initialize training set 𝑇 = ∅

4. For each 𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖
′ ∈ 𝐷

  𝑞𝑖 = (𝑟𝑖 + Βmax
𝑎′

 𝑄𝜃 𝑠𝑖
′, 𝑎′ // new estimate of 𝑄 𝑠𝑖 , 𝑎𝑖

 Add training example 〈 𝑠𝑖 , 𝑎𝑖 ,  𝑞𝑖〉 to T    

5. Learn new  𝑄𝜃 from training data 𝑇

6. Goto 3

Step 5 could use any regression algorithm: neural network, 
random forests, support vector regression, Gaussian Process



DQN

DQN was developed by DeepMind originally for 
online learning of Atari games

However, the algorithm can be used effectively as is 
for Batch RL. 

 I haven’t seen this done, but it is straightforward. 



DQN for Batch RL

1. Let 𝐷 = 𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖
′ } be our batch of transitions

2. Initialize neural network parameter values to 𝜃

3. Randomly sample a mini-batch of 𝐵 transition { 𝑠𝑘 , 𝑎𝑘 , 𝑟𝑘 , 𝑠𝑘
′ }

from 𝐷

4. Perform a TD update for each parameter based on mini-batch

𝜃 ← 𝜃 + 𝛼 

𝑘

𝑟𝑘 + Βmax
𝑎′

 𝑄𝜃 𝑠𝑘
′ , 𝑎′ −  𝑄𝜃 𝑠𝑘 , 𝑎𝑘 𝛻𝜃 𝑄 𝑠𝑘 , 𝑎𝑘

5. Goto 3
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21



Projection Approach to Approximation

Recall the standard Bellman equation:

or equivalently                         where T[.] is the 
Bellman operator

Recall from value iteration, the sub-optimality of a 
value function can be bounded in terms of the 
Bellman error:

This motivates trying to find an approximate value 
function with small Bellman error 
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Projection Approach to Approximation

Suppose that we have a space of representable value 
functions

E.g. the space of linear functions over given features

Let P be a projection operator for that space

Projects any value function (in or outside of the space) to 
“closest” value function in the space

“Fixed Point” Bellman Equation with approximation

Depending on space this will have a small Bellman error

LSPI will attempt to arrive at such a value function

Assumes linear approximation and least-squares projection 

 ]ˆ[ˆ ** VTV 





Projected Value Iteration
Naïve Idea: try computing projected fixed point using VI

Exact VI: (iterate Bellman backups) 

Projected VI: (iterated projected Bellman backups):

][1 ii VTV 

 ]ˆ[ˆ 1 ii VTV 

exact Bellman backup

(produced value function)

Projects exact Bellman

backup to closest function

in our restricted function space



Example: Projected Bellman Backup

Restrict space to linear functions over a single feature :

Suppose just two states  s1 and s2 with: 
Suppose exact backup of Vi gives:

s1)=1 s2)=2
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s1)=1, s2)=2

Can we represent this exact

backup in our linear space?

No



Example: Projected Bellman Backup

Restrict space to linear functions over a single feature :

Suppose just two states  s1 and s2 with: 
Suppose exact backup of Vi gives:

The backup can’t be represented via our linear function:

s1)=1 s2)=2

)()(ˆ swsV 

 ]ˆ[ˆ 1 ii VTV 
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s1)=1, s2)=2

projected backup is 

just least-squares fit

to exact backup
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Problem: Stability

Exact value iteration stability ensured by 
contraction property of Bellman backups:

 Is the “projected” Bellman backup a contraction:

?
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Example: Stability Problem [Bertsekas & Tsitsiklis 1996]

Problem: Most projections lead to backups that 
are not contractions and unstable

s2
s1

Rewards all zero, single action,  = 0.9: V* = 0

Consider linear approx. w/ single feature  with weight w. 

)()(ˆ swsV  Optimal w = 0

since V*=0



Example: Stability Problem

From Vi perform projected backup for each state

Can’t be represented in our space so find wi+1 that gives 
least-squares approx. to exact backup

After some math we can get:  wi+1 = 1.2 wi

What does this mean? 

iii wsVsVT 8.1)(ˆ)](ˆ[ 21  
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s2
s1

s1)=1
Vi(s1) = wi 

s2)=2
Vi(s2) = 2wi

weight value

at iteration i



Example: Stability Problem

1 2

Iteration #

S

V(x)

0V̂

3V̂

2V̂
1V̂

Each iteration of Bellman backup makes approximation worse!

Even for this trivial problem “projected” VI diverges.



Understanding the Problem

What went wrong?

Exact Bellman backups reduces error in max-norm

Least squares (= projection) non-expansive in L2 norm

 But may increase max-norm distance!

Conclusion: Alternating Bellman backups and 
projection is risky business



OK, What’s LSTD?

Approximates value function of policy 𝜋 given 
trajectories of 𝜋

Assumes linear approximation of 𝑉𝜋 denoted  𝑉

The k are arbitrary feature functions of states

Some vector notation
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Deriving LSTD

is a linear function 
in the column space 

of  1…k, that is,

wV ˆ

K basis functions

# states

1(s1) 2(s1)...

1(s2) 2(s2)…

.

.

.

=

assigns a value to every state

V̂

KKwwV   11
ˆ



Suppose we know true value of policy

We would like the following:

Least squares weights minimizes squared error

Least squares projection is then 

VwV ˆ

Vw TT  1)(

Textbook least squares projection operator

VwV TT  1)(ˆ

Sometimes called pseudoinverse



But we don’t know V…

Recall fixed-point equation for policies

Will solve a projected fixed-point equation:

Substituting least squares projection into this gives:

Solving for w:

   VPRV ˆˆ 
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Almost there…

Matrix to invert is only K x K

But…

Expensive to construct matrix (e.g. P is |S|x|S|)

 Presumably we are using LSPI because |S| is enormous 

We don’t know P

We don’t know R

RPw TTT  1)( 



Using Samples for 

K basis functions

1(s1) 2(s1)...

1(s2) 2(s2)…

.

.

.

Idea:  Replace enumeration of states with sampled states

states sampleŝ

Suppose we have state transition samples of the policy
running in the MDP: {(si,ai,ri,si’)}



Using Samples for R

r1

r2

.

.

.

Idea:  Replace enumeration of reward with sampled rewards

samples

Suppose we have state transition samples of the policy
running in the MDP: {(si,ai,ri,si’)}

R = 



40



Using Samples for P

K basis functions

1(s1’) 2(s1’)...

1(s2’) 2(s2’)…

.

.

.

Idea:   Replace expectation over next states with sampled 
next states.

s’ from (s,a,r,s’)P



Putting it Together

LSTD needs to compute:

The hard part of which is B the kxk matrix:

Both B and b can be computed incrementally for 
each (s,a,r,s’) sample: (initialize to zero)
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LSTD Algorithm

Collect data by executing trajectories of current policy

For each (s,a,r,s’) sample: 

bBw 1
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LSTD Summary
Does O(k2) work per datum

Linear in amount of data.

Approaches model-based answer in limit

Finding fixed point requires inverting matrix

Fixed point almost always exists

Stable; efficient



Approximate Policy Iteration with LSTD

Start with random weights w (i.e. value function)

Repeat Until Convergence

Evaluate       using LSTD

 Generate sample trajectories of 

 Use LSTD to produce new weights w
(w gives an approx. value function of     )

)( s = greedy(             )     // policy improvement),(ˆ wsV







Policy Iteration: iterates between policy improvement 

and policy evaluation 

Idea: use LSTD for approximate policy evaluation in PI



What Breaks?

No way to execute greedy policy without a model

Approximation is biased by current policy

We only approximate values of states we see when 
executing the current policy

LSTD is a weighted approximation toward those states

Can result in Learn-forget cycle of policy iteration

Drive off the road; learn that it’s bad

New policy never does this; forgets that it’s bad

Not truly a batch method

Data must be collected from current policy for LSTD



LSPI

LSPI is similar to previous loop but replaces LSTD 
with a new algorithm LSTDQ

LSTD:  produces a value function

Requires samples from policy under consideration

LSTDQ:  produces  a Q-function for current policy

Can learn Q-function for policy from any (reasonable) set 
of samples---sometimes called an off-policy method

No need to collect samples from current policy

Disconnects policy evaluation from data collection

Permits reuse of data across iterations!

Truly a batch method.


