
Batch Reinforcement Learning

Alan Fern

* Based in part on slides by Ronald Parr

Overview

What is batch reinforcement learning?

Least Squares Policy Iteration

Fitted Q-iteration

Batch DQN

Online versus Batch RL

Online RL: integrates data collection and optimization

Select actions in environment and at the same time update
parameters based on each observed (s,a,s’,r)

 Batch RL: decouples data collection and optimization

First generate/collect experience in the environment giving a
data set of state-action-reward-state pairs {(si,ai,ri,si’)}

We may not even know where the data came from

Use the fixed set of experience to optimize/learn a policy

Online vs. Batch:

Batch algorithms are often more “data efficient” and stable

Batch algorithms ignore the exploration-exploitation
problem, and do their best with the data they have

Batch RL Motivation

There are many applications that naturally fit the batch
RL model

Medical Treatment Optimization:

 Input: collection of treatment episodes for an ailment giving
sequence of observations and actions including outcomes

Ouput: a treatment policy, ideally better than current practice

Emergency Response Optimization:

 Input: collection of emergency response episodes giving
movement of emergency resources before, during, and after
911 calls

Output: emergency response policy

Batch RL Motivation

Online Education Optimization:

 Input: collection of episodes of students interacting with an
educational system that gives information and questions in
order to teach a topic

 Actions correspond to giving the student some information
or giving them a question of a particular difficulty and topic

Ouput: a teaching policy that is tuned to student based on
what is known about the student

Least Squares Policy Iteration (LSPI)

LSPI is a model-free batch RL algorithm

Learns a linear approximation of Q-function

stable and efficient

Never diverges or gives meaningless answers

LSPI can be applied to a dataset regardless of how
it was collected

But garbage in, garbage out.

Least-Squares Policy Iteration, Michail Lagoudakis and Ronald

Parr, Journal of Machine Learning Research (JMLR), Vol. 4,
2003, pp. 1107-1149.

http://www.cs.duke.edu/~parr/jmlr03.pdf

Least Squares Policy iteration

No time to cover details of derivation

Details are in the appendix of these slides

LSPI is a wrapper around an algorithm LSTDQ

LSTDQ: learns a Q-function for current policy given
the batch of data

Can learn Q-function for policy from any (reasonable) set
of samples---sometimes called an off-policy method

No need to collect samples from current policy

Disconnects policy evaluation from data collection

Permits reuse of data across iterations!

Truly a batch method.

Implementing LSTDQ

LSTDQ uses a linear Q-function with features 𝜙𝑘 and
weights 𝑤𝑘.

defines greedy policy:

For each (s,a,r,s’) sample in data set:

))'(,'(),(),(),(ssasasasBB wjijiijij

),(asrbb iii

bBw 1

k

kkw aswasQ),(),(ˆ

),'(ˆmaxarg asQwa

),(ˆmaxarg)(asQs waw

Running LSPI

There is a Matlab implementation available!

1. Collect a database of (s,a,r,s’) experiences
(this is the magic step)

2. Start with random weights (= random policy)

3. Repeat

Evaluate current policy against database

 Run LSTDQ to generate new set of weights

 New weights imply new Q-function and hence new
policy

Replace current weights with new weights

Until convergence

Results: Bicycle Riding

Watch random controller operate simulated bike

Collect ~40,000 (s,a,r,s’) samples

Pick 20 simple feature functions (5 actions)

Make 5-10 passes over data (PI steps)

Reward was based on distance to goal + goal
achievement

Result:
Controller that balances and rides to goal

Bicycle Trajectories

What about Q-learning?

Ran Q-learning with same features

Used experience replay for data efficiency

Q-learning Results

LSPI Robustness

Some key points

LSPI is a batch RL algorithm

Can generate trajectory data anyway you want

 Induces a policy based on global optimization over
full dataset

Very stable with no parameters that need
tweaking

So, what’s the bad news?

LSPI does not address the exploration problem

 It decouples data collection from policy optimization

This is often not a major issue, but can be in some cases

k2 can sometimes be big

Lots of storage

Matrix inversion can be expensive

Bicycle needed “shaping” rewards

Still haven’t solved

Feature selection (issue for all machine learning, but RL
seems even more sensitive)

Fitted Q-Iteration

LSPI is limited to linear functions over a given set of
features

Fitted Q-Iteration allows us to use any type of
function approximator for the Q-function

Random Forests have been popular

Deep Networks

Fitted Q-Iteration is a very straightforward batch
version of Q-learning

Damien Ernst, Pierre Geurts, Louis Wehenkel. (2005).

Tree-Based Batch Mode Reinforcement Learning

Journal of Machine Learning Research; 6(Apr):503—556.

Fitted Q-Iteration

1. Let 𝐷 = 𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖
′ } be our batch of transitions

2. Initialize approximate Q-function 𝑄𝜃
(perhaps weights of a deep network)

3. Initialize training set 𝑇 = ∅

4. For each 𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖
′ ∈ 𝐷

 𝑞𝑖 = (𝑟𝑖 + Βmax
𝑎′

 𝑄𝜃 𝑠𝑖
′, 𝑎′ // new estimate of 𝑄 𝑠𝑖 , 𝑎𝑖

 Add training example 〈 𝑠𝑖 , 𝑎𝑖 , 𝑞𝑖〉 to T

5. Learn new 𝑄𝜃 from training data 𝑇

6. Goto 3

Step 5 could use any regression algorithm: neural network,
random forests, support vector regression, Gaussian Process

DQN

DQN was developed by DeepMind originally for
online learning of Atari games

However, the algorithm can be used effectively as is
for Batch RL.

 I haven’t seen this done, but it is straightforward.

DQN for Batch RL

1. Let 𝐷 = 𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖
′ } be our batch of transitions

2. Initialize neural network parameter values to 𝜃

3. Randomly sample a mini-batch of 𝐵 transition { 𝑠𝑘 , 𝑎𝑘 , 𝑟𝑘 , 𝑠𝑘
′ }

from 𝐷

4. Perform a TD update for each parameter based on mini-batch

𝜃 ← 𝜃 + 𝛼

𝑘

𝑟𝑘 + Βmax
𝑎′

 𝑄𝜃 𝑠𝑘
′ , 𝑎′ − 𝑄𝜃 𝑠𝑘 , 𝑎𝑘 𝛻𝜃 𝑄 𝑠𝑘 , 𝑎𝑘

5. Goto 3

Appendix

21

Projection Approach to Approximation

Recall the standard Bellman equation:

or equivalently where T[.] is the
Bellman operator

Recall from value iteration, the sub-optimality of a
value function can be bounded in terms of the
Bellman error:

This motivates trying to find an approximate value
function with small Bellman error

'

**)'(),|'(),(max)(
sa sVassPasRsV

][** VTV

][VTV

Projection Approach to Approximation

Suppose that we have a space of representable value
functions

E.g. the space of linear functions over given features

Let P be a projection operator for that space

Projects any value function (in or outside of the space) to
“closest” value function in the space

“Fixed Point” Bellman Equation with approximation

Depending on space this will have a small Bellman error

LSPI will attempt to arrive at such a value function

Assumes linear approximation and least-squares projection

]ˆ[ˆ ** VTV

Projected Value Iteration
Naïve Idea: try computing projected fixed point using VI

Exact VI: (iterate Bellman backups)

Projected VI: (iterated projected Bellman backups):

][1 ii VTV

]ˆ[ˆ 1 ii VTV

exact Bellman backup

(produced value function)

Projects exact Bellman

backup to closest function

in our restricted function space

Example: Projected Bellman Backup

Restrict space to linear functions over a single feature :

Suppose just two states s1 and s2 with:
Suppose exact backup of Vi gives:

s1)=1 s2)=2

)()(ˆ swsV

2)](ˆ[,2)](ˆ[21 sVTsVT ii

s1)=1, s2)=2

Can we represent this exact

backup in our linear space?

No

Example: Projected Bellman Backup

Restrict space to linear functions over a single feature :

Suppose just two states s1 and s2 with:
Suppose exact backup of Vi gives:

The backup can’t be represented via our linear function:

s1)=1 s2)=2

)()(ˆ swsV

]ˆ[ˆ 1 ii VTV

2)](ˆ[,2)](ˆ[21 sVTsVT ii

s1)=1, s2)=2

projected backup is

just least-squares fit

to exact backup

)(333.1)(ˆ 1 ssV i

Problem: Stability

Exact value iteration stability ensured by
contraction property of Bellman backups:

 Is the “projected” Bellman backup a contraction:

?

][1 ii VTV

]ˆ[ˆ 1 ii VTV

Example: Stability Problem [Bertsekas & Tsitsiklis 1996]

Problem: Most projections lead to backups that
are not contractions and unstable

s2
s1

Rewards all zero, single action, = 0.9: V* = 0

Consider linear approx. w/ single feature with weight w.

)()(ˆ swsV Optimal w = 0

since V*=0

Example: Stability Problem

From Vi perform projected backup for each state

Can’t be represented in our space so find wi+1 that gives
least-squares approx. to exact backup

After some math we can get: wi+1 = 1.2 wi

What does this mean?

iii wsVsVT 8.1)(ˆ)](ˆ[21

iii wsVsVT 8.1)(ˆ)](ˆ[22

s2
s1

s1)=1
Vi(s1) = wi

s2)=2
Vi(s2) = 2wi

weight value

at iteration i

Example: Stability Problem

1 2

Iteration #

S

V(x)

0V̂

3V̂

2V̂
1V̂

Each iteration of Bellman backup makes approximation worse!

Even for this trivial problem “projected” VI diverges.

Understanding the Problem

What went wrong?

Exact Bellman backups reduces error in max-norm

Least squares (= projection) non-expansive in L2 norm

 But may increase max-norm distance!

Conclusion: Alternating Bellman backups and
projection is risky business

OK, What’s LSTD?

Approximates value function of policy 𝜋 given
trajectories of 𝜋

Assumes linear approximation of 𝑉𝜋 denoted 𝑉

The k are arbitrary feature functions of states

Some vector notation

k kk swsV)()(ˆ

)(ˆ

)(ˆ

ˆ
1

nsV

sV

V

kw

w

w
1

)(

)(1

nk

k

k

s

s

 K 1

Deriving LSTD

is a linear function
in the column space

of 1…k, that is,

wV ˆ

K basis functions

states

1(s1) 2(s1)...

1(s2) 2(s2)…

.

.

.

=

assigns a value to every state

V̂

KKwwV 11
ˆ

Suppose we know true value of policy

We would like the following:

Least squares weights minimizes squared error

Least squares projection is then

VwV ˆ

Vw TT 1)(

Textbook least squares projection operator

VwV TT 1)(ˆ

Sometimes called pseudoinverse

But we don’t know V…

Recall fixed-point equation for policies

Will solve a projected fixed-point equation:

Substituting least squares projection into this gives:

Solving for w:

 VPRV ˆˆ

 wPRw TT 1)(

RPw TTT 1)(

))(,|())(,|(

))(,|())(,|(

,

))(,(

))(,(

11

1111111

nnnn

n

nn sssPsssP

sssPsssP

P

ssR

ssR

R

'

)'())(,|'())(,()(
s

sVsssPssRsV

Almost there…

Matrix to invert is only K x K

But…

Expensive to construct matrix (e.g. P is |S|x|S|)

 Presumably we are using LSPI because |S| is enormous

We don’t know P

We don’t know R

RPw TTT 1)(

Using Samples for

K basis functions

1(s1) 2(s1)...

1(s2) 2(s2)…

.

.

.

Idea: Replace enumeration of states with sampled states

states sampleŝ

Suppose we have state transition samples of the policy
running in the MDP: {(si,ai,ri,si’)}

Using Samples for R

r1

r2

.

.

.

Idea: Replace enumeration of reward with sampled rewards

samples

Suppose we have state transition samples of the policy
running in the MDP: {(si,ai,ri,si’)}

R =

40

Using Samples for P

K basis functions

1(s1’) 2(s1’)...

1(s2’) 2(s2’)…

.

.

.

Idea: Replace expectation over next states with sampled
next states.

s’ from (s,a,r,s’)P

Putting it Together

LSTD needs to compute:

The hard part of which is B the kxk matrix:

Both B and b can be computed incrementally for
each (s,a,r,s’) sample: (initialize to zero)

bBRPw TTT 11)(

)(PB TT

)'()()()(ssssBB jijiijij

)(srbb iii

Rb T from previous slide

LSTD Algorithm

Collect data by executing trajectories of current policy

For each (s,a,r,s’) sample:

bBw 1

)'()()()(ssssBB jijiijij

),(asrbb iii

LSTD Summary
Does O(k2) work per datum

Linear in amount of data.

Approaches model-based answer in limit

Finding fixed point requires inverting matrix

Fixed point almost always exists

Stable; efficient

Approximate Policy Iteration with LSTD

Start with random weights w (i.e. value function)

Repeat Until Convergence

Evaluate using LSTD

 Generate sample trajectories of

 Use LSTD to produce new weights w
(w gives an approx. value function of)

)(s = greedy() // policy improvement),(ˆ wsV

Policy Iteration: iterates between policy improvement

and policy evaluation

Idea: use LSTD for approximate policy evaluation in PI

What Breaks?

No way to execute greedy policy without a model

Approximation is biased by current policy

We only approximate values of states we see when
executing the current policy

LSTD is a weighted approximation toward those states

Can result in Learn-forget cycle of policy iteration

Drive off the road; learn that it’s bad

New policy never does this; forgets that it’s bad

Not truly a batch method

Data must be collected from current policy for LSTD

LSPI

LSPI is similar to previous loop but replaces LSTD
with a new algorithm LSTDQ

LSTD: produces a value function

Requires samples from policy under consideration

LSTDQ: produces a Q-function for current policy

Can learn Q-function for policy from any (reasonable) set
of samples---sometimes called an off-policy method

No need to collect samples from current policy

Disconnects policy evaluation from data collection

Permits reuse of data across iterations!

Truly a batch method.

