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Chapter 8 :: Topics

• Introduction
• Memory System Performance 

Analysis
• Caches
• Virtual Memory
• Memory-Mapped I/O
• Summary
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Processor MemoryAddress
MemWrite

WriteData
ReadData

WE

CLKCLK

• Computer performance depends on:
– Processor performance
– Memory system performance

Memory Interface

Introduction
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In prior chapters, assumed access memory in 1 clock 
cycle – but hasn’t been true since the 1980’s

Processor-Memory Gap
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• Make memory system appear as fast as 
processor

• Use hierarchy of memories
• Ideal memory:

– Fast
– Cheap (inexpensive)
– Large (capacity)

But can only choose two!

Memory System Challenge
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Memory Hierarchy

Technology Price / GB Access
Time (ns)

Bandwidth
(GB/s)

Cache

Main Memory

Virtual Memory

Capacity

S
pe

ed

SRAM $10,000 1

DRAM $10 10 - 50

SSD $1 100,000

25+

10

0.5

0.1HDD $0.1 10,000,000
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Exploit locality to make memory accesses fast
• Temporal Locality:

– Locality in time
– If data used recently, likely to use it again soon
– How to exploit: keep recently accessed data in higher 

levels of memory hierarchy

• Spatial Locality:
– Locality in space
– If data used recently, likely to use nearby data soon
– How to exploit: when access data, bring nearby data 

into higher levels of memory hierarchy too

Locality
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• Hit: data found in that level of memory hierarchy
• Miss: data not found (must go to next level)

Hit Rate = # hits / # memory accesses
= 1 – Miss Rate

Miss Rate = # misses / # memory accesses
= 1 – Hit Rate

• Average memory access time (AMAT): average time 
for processor to access data
AMAT = tcache + MRcache[tMM + MRMM(tVM)]

Memory Performance
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• A program has 2,000 loads and stores
• 1,250 of these data values in cache
• Rest supplied by other levels of memory 

hierarchy
• What are the hit and miss rates for the cache?

Memory Performance Example 1
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• A program has 2,000 loads and stores
• 1,250 of these data values in cache
• Rest supplied by other levels of memory 

hierarchy
• What are the hit and miss rates for the cache?

Hit Rate = 1250/2000 = 0.625
Miss Rate = 750/2000 = 0.375 = 1 – Hit Rate

Memory Performance Example 1
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• Suppose processor has 2 levels of hierarchy: 
cache and main memory

• tcache = 1 cycle, tMM = 100 cycles
• What is the AMAT of the program from 

Example 1?

Memory Performance Example 2
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• Suppose processor has 2 levels of hierarchy: 
cache and main memory

• tcache = 1 cycle, tMM = 100 cycles
• What is the AMAT of the program from 

Example 1?

AMAT = tcache + MRcache(tMM)
= [1 + 0.375(100)] cycles
= 38.5 cycles

Memory Performance Example 2
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• Amdahl’s Law: the 
effort spent increasing the 
performance of a 
subsystem is wasted 
unless the subsystem 
affects a large percentage 
of overall performance

• Co-founded 3 companies, 
including one called 
Amdahl Corporation in 
1970

Gene Amdahl, 1922-
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• Highest level in memory hierarchy
• Fast (typically ~ 1 cycle access time)
• Ideally supplies most data to processor
• Usually holds most recently accessed data

Cache
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• What data is held in the cache?
• How is data found?
• What data is replaced?

Focus on data loads, but stores follow same principles

Cache Design Questions
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• Ideally, cache anticipates needed data and 
puts it in cache

• But impossible to predict future
• Use past to predict future – temporal and 

spatial locality:
– Temporal locality: copy newly accessed data 

into cache
– Spatial locality: copy neighboring data into 

cache too

What data is held in the cache?
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• Capacity (C): 
– number of data bytes in cache

• Block size (b): 
– bytes of data brought into cache at once

• Number of blocks (B = C/b): 
– number of blocks in cache: B = C/b

• Degree of associativity (N): 
– number of blocks in a set

• Number of sets (S = B/N): 
– each memory address maps to exactly one cache set 

Cache Terminology
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• Cache organized into S sets
• Each memory address maps to exactly one set
• Caches categorized by # of blocks in a set:

– Direct mapped: 1 block per set
– N-way set associative: N blocks per set
– Fully associative: all cache blocks in 1 set

• Examine each organization for a cache with:
– Capacity (C = 8 words)
– Block size (b = 1 word)
– So, number of blocks (B = 8)

How is data found?
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• C = 8 words (capacity)
• b = 1 word (block size)
• So, B = 8 (# of blocks)

Ridiculously small, but will illustrate organizations

Example Cache Parameters
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7 (111)

00...00010000

230 Word Main Memory

mem[0x00...00]
mem[0x00...04]
mem[0x00...08]
mem[0x00...0C]
mem[0x00...10]
mem[0x00...14]
mem[0x00...18]
mem[0x00..1C]
mem[0x00..20]
mem[0x00...24]

mem[0xFF...E0]
mem[0xFF...E4]
mem[0xFF...E8]
mem[0xFF...EC]
mem[0xFF...F0]
mem[0xFF...F4]
mem[0xFF...F8]
mem[0xFF...FC]

23 Word Cache

Set Number

Address

00...00000000
00...00000100
00...00001000
00...00001100

00...00010100
00...00011000
00...00011100
00...00100000
00...00100100

11...11110000

11...11100000
11...11100100
11...11101000
11...11101100

11...11110100
11...11111000
11...11111100

6 (110)
5 (101)
4 (100)
3 (011)
2 (010)
1 (001)
0 (000)

Direct Mapped Cache
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DataTag

00
Tag Set

Byte
OffsetMemory

Address

DataHit

V

=

27 3

27 32

8-entry x
(1+27+32)-bit

SRAM

Direct Mapped Cache Hardware
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# MIPS assembly code

addi $t0, $0, 5

loop: beq $t0, $0, done

lw $t1, 0x4($0)

lw $t2, 0xC($0)

lw $t3, 0x8($0)

addi $t0, $t0, -1

j    loop

done:

DataTagV

00...001 mem[0x00...04]

0
0
0

0

0

00
Tag Set

Byte
OffsetMemory

Address
V

3
00100...00

1
00...00
00...00

1

mem[0x00...0C]
mem[0x00...08]

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

Miss Rate = ?

Direct Mapped Cache Performance
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# MIPS assembly code

addi $t0, $0, 5

loop: beq $t0, $0, done

lw $t1, 0x4($0)

lw $t2, 0xC($0)

lw $t3, 0x8($0)

addi $t0, $t0, -1

j    loop

done:

DataTagV

00...001 mem[0x00...04]

0
0
0

0

0

00
Tag Set

Byte
OffsetMemory

Address
V

3
00100...00

1
00...00
00...00

1

mem[0x00...0C]
mem[0x00...08]

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

Miss Rate = 3/15
= 20%

Temporal Locality
Compulsory Misses

Direct Mapped Cache Performance
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# MIPS assembly code

addi $t0, $0, 5

loop: beq $t0, $0, done

lw $t1, 0x4($0)

lw $t2, 0x24($0)

addi $t0, $t0, -1

j    loop

done:

DataTagV

00...001 mem[0x00...04]

0
0
0

0

0

00
Tag Set

Byte
OffsetMemory

Address
V

3
00100...01

0
0

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

mem[0x00...24]

Miss Rate = ?

Direct Mapped Cache: Conflict
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# MIPS assembly code

addi $t0, $0, 5

loop: beq $t0, $0, done

lw $t1, 0x4($0)

lw $t2, 0x24($0)

addi $t0, $t0, -1

j    loop

done:

DataTagV

00...001 mem[0x00...04]

0
0
0

0

0

00
Tag Set

Byte
OffsetMemory

Address
V

3
00100...01

0
0

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

mem[0x00...24]

Miss Rate = 10/10
= 100%

Conflict Misses

Direct Mapped Cache: Conflict
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DataTag

Tag Set
Byte

OffsetMemory
Address

Data

Hit1

V

=

01

00

32 32

32

DataTagV

=

Hit1Hit0

Hit

28 2

28 28

Way 1 Way 0

N-Way Set Associative Cache
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# MIPS assembly code

addi $t0, $0, 5

loop: beq $t0, $0, done

lw $t1, 0x4($0)

lw $t2, 0x24($0)

addi $t0, $t0, -1

j    loop

done:

DataTagV DataTagV

0 0

0
0

0

0
0

0

Way 1 Way 0

Set 3
Set 2
Set 1
Set 0

Miss Rate = ?

N-Way Set Associative Performance
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# MIPS assembly code

addi $t0, $0, 5

loop: beq $t0, $0, done

lw $t1, 0x4($0)

lw $t2, 0x24($0)

addi $t0, $t0, -1

j    loop

done:

DataTagV DataTagV

00...001 mem[0x00...04]00...10 1mem[0x00...24]

0
0

0

0
0

0

Way 1 Way 0

Set 3
Set 2
Set 1
Set 0

Miss Rate = 2/10 
= 20%

Associativity reduces
conflict misses

N-Way Set Associative Performance
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DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV

Reduces conflict misses
Expensive to build

Fully Associative Cache
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• Increase block size:
– Block size, b = 4 words
– C = 8 words
– Direct mapped (1 block per set)
– Number of blocks, B = 2 (C/b = 8/4 = 2)

DataTag

00
Tag

Byte
OffsetMemory

Address

Data

V

00011011

Block
Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 0

Spatial Locality?
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DataTag

00
Tag

Byte
OffsetMemory

Address

Data

V

00011011

Block
Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 0

Cache with Larger Block Size



Chapter 8 <32> 

addi $t0, $0, 5

loop: beq $t0, $0, done

lw $t1, 0x4($0)

lw $t2, 0xC($0)

lw $t3, 0x8($0)

addi $t0, $t0, -1

j    loop

done:

Miss Rate = ?

Direct Mapped Cache Performance
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addi $t0, $0, 5

loop: beq $t0, $0, done

lw $t1, 0x4($0)

lw $t2, 0xC($0)

lw $t3, 0x8($0)

addi $t0, $t0, -1

j    loop

done:

00...00 0 11

DataTag

00
Tag

Byte
OffsetMemory

Address

Data

V

00011011

Block
Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 000...001 mem[0x00...0C]

0
mem[0x00...08] mem[0x00...04] mem[0x00...00]

Miss Rate = 1/15 
= 6.67%

Larger blocks
reduce compulsory misses
through spatial locality

Direct Mapped Cache Performance
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• Capacity: C 
• Block size: b
• Number of blocks in cache: B = C/b
• Number of blocks in a set: N
• Number of sets: S = B/N

Organization
Number of Ways 

(N)
Number of Sets 

(S = B/N)
Direct Mapped 1 B

N-Way Set Associative 1 < N < B B / N

Fully Associative B 1

Cache Organization Recap
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• Cache is too small to hold all data of interest at once
• If cache full: program accesses data X & evicts data Y
• Capacity miss when access Y again
• How to choose Y to minimize chance of needing it again? 
• Least recently used (LRU) replacement: the least recently 

used block in a set evicted

Capacity Misses
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• Compulsory: first time data accessed
• Capacity: cache too small to hold all data of 

interest
• Conflict: data of interest maps to same 

location in cache

Miss penalty: time it takes to retrieve a block from 
lower level of hierarchy

Types of Misses
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DataTagV
0

DataTagV
0

0

0

0

0

U

0 0

0
0

0
0

Way 1 Way 0

Set 3 (11)
Set 2 (10)
Set 1 (01)
Set 0 (00)

# MIPS assembly

lw $t0, 0x04($0)
lw $t1, 0x24($0)
lw $t2, 0x54($0)

LRU Replacement
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DataTagV
0

DataTagV
0

0

0

0

0

U

mem[0x00...04]1 00...000mem[0x00...24] 100...010

0
0

0
0

DataTagV
0

DataTagV
0

0

0

0

0

U

mem[0x00...54]1 00...101mem[0x00...24] 100...010

0
0

0
1

(a)

(b)

Way 1 Way 0

Way 1 Way 0

Set 3 (11)
Set 2 (10)
Set 1 (01)
Set 0 (00)

Set 3 (11)
Set 2 (10)
Set 1 (01)
Set 0 (00)

# MIPS assembly

lw $t0, 0x04($0)
lw $t1, 0x24($0)
lw $t2, 0x54($0)

LRU Replacement
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• What data is held in the cache?
– Recently used data (temporal locality)
– Nearby data (spatial locality)

• How is data found?
– Set is determined by address of data
– Word within block also determined by address
– In associative caches, data could be in one of several 

ways

• What data is replaced?
– Least-recently used way in the set

Cache Summary



Chapter 8 <40> 

• Bigger caches reduce  capacity misses
• Greater associativity reduces conflict misses

Adapted from Patterson & Hennessy, Computer Architecture: A Quantitative Approach, 2011

Miss Rate Trends
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• Bigger blocks reduce compulsory misses
• Bigger blocks increase conflict misses

Miss Rate Trends
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• Larger caches have lower miss rates, longer 
access times

• Expand memory hierarchy to multiple levels of 
caches

• Level 1: small and fast (e.g. 16 KB, 1 cycle)
• Level 2: larger and slower (e.g. 256 KB, 2-6 

cycles)
• Most modern PCs have L1, L2, and L3 cache

Multilevel Caches
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Intel Pentium III Die
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• Gives the illusion of bigger memory
• Main memory (DRAM) acts as cache for hard 

disk

Virtual Memory
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• Physical Memory: DRAM (Main Memory)
• Virtual Memory: Hard drive

– Slow, Large, Cheap

Memory Hierarchy

Technology Price / GB Access
Time (ns)

Bandwidth
(GB/s)

Cache

Main Memory

Virtual Memory

Capacity

S
pe

ed

SRAM $10,000 1

DRAM $10 10 - 50

SSD $1 100,000

25+

10

0.5

0.1HDD $0.1 10,000,000
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Read/Write
Head

Magnetic
Disks

Takes milliseconds to seek correct location on disk

Hard Disk
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• Virtual addresses
– Programs use virtual addresses
– Entire virtual address space stored on a hard drive
– Subset of virtual address data in DRAM
– CPU translates virtual addresses into physical addresses 

(DRAM addresses)
– Data not in DRAM fetched from hard drive

• Memory Protection
– Each program has own virtual to physical mapping
– Two programs can use same virtual address for different data
– Programs don’t need to be aware others are running
– One program (or virus) can’t corrupt memory used by 

another 

Virtual Memory
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Cache Virtual Memory
Block Page

Block Size Page Size

Block Offset Page Offset

Miss Page Fault

Tag Virtual Page Number

Physical memory acts as cache for virtual memory

Cache/Virtual Memory Analogues
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• Page size: amount of memory transferred 
from hard disk to DRAM at once

• Address translation: determining physical 
address from virtual address

• Page table: lookup table used to translate 
virtual addresses to physical addresses

Virtual Memory Definitions
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Most accesses hit in physical memory
But programs have the large capacity of virtual memory

Virtual & Physical Addresses
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Address Translation



Chapter 8 <52> 

• System:
– Virtual memory size: 2 GB = 231 bytes
– Physical memory size: 128 MB = 227 bytes
– Page size: 4 KB = 212 bytes

Virtual Memory Example
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• System:
– Virtual memory size: 2 GB = 231 bytes
– Physical memory size: 128 MB = 227 bytes
– Page size: 4 KB = 212 bytes

• Organization:
– Virtual address: 31 bits
– Physical address: 27 bits
– Page offset: 12 bits
– # Virtual pages = 231/212 = 219 (VPN = 19 bits)
– # Physical pages = 227/212 = 215 (PPN = 15 bits)

Virtual Memory Example



Chapter 8 <54> 

• 19-bit virtual page numbers
• 15-bit physical page numbers

Virtual Memory Example
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Virtual Memory Example

What is the physical address 
of virtual address 0x247C?
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Virtual Memory Example
What is the physical address 
of virtual address 0x247C?

– VPN = 0x2
– VPN 0x2 maps to PPN 0x7FFF
– 12-bit page offset: 0x47C
– Physical address = 0x7FFF47C
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• Page table
– Entry for each virtual page
– Entry fields:

• Valid bit: 1 if page in physical memory
• Physical page number: where the page is located

How to perform translation?
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0
0
1         0x0000
1         0x7FFE
0
0

0
0
1         0x0001
0
0
1         0x7FFF
0
0

V

Virtual
Address 0x00002       47C

Hit

Physical
Page Number

1219

15 12

Virtual
Page Number

P
ag

e 
Ta

bl
e

Page
Offset

Physical
Address 0x7FFF       47C

VPN is index 
into page table

Page Table Example
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0
0
1         0x0000
1         0x7FFE
0
0

0
0
1         0x0001
0
0
1         0x7FFF
0
0

V
Physical

Page Number

P
ag

e 
Ta

bl
e

What is the physical 
address of virtual 
address 0x5F20?

Page Table Example 1
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0
0
1         0x0000
1         0x7FFE
0
0

0
0
1         0x0001
0
0
1         0x7FFF
0
0

V

Virtual
Address 0x00005       F20

Hit

Physical
Page Number

1219

15 12

Virtual
Page Number

P
ag

e 
Ta

bl
e

Page
Offset

Physical
Address 0x0001       F20

What is the physical 
address of virtual 
address 0x5F20?
– VPN = 5
– Entry 5 in page table 

VPN 5 => physical 
page 1

– Physical address: 
0x1F20

Page Table Example 1
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0
0
1         0x0000
1         0x7FFE
0
0

0
0
1         0x0001
0
0
1         0x7FFF
0
0

V

Virtual
Address 0x00007       3E0

Hit

Physical
Page Number

19

15

Virtual
Page Number

P
ag

e 
Ta

bl
e

Page
Offset

What is the physical 
address of virtual 
address 0x73E0?

Page Table Example 2
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0
0
1         0x0000
1         0x7FFE
0
0

0
0
1         0x0001
0
0
1         0x7FFF
0
0

V

Virtual
Address 0x00007       3E0

Hit

Physical
Page Number

19

15

Virtual
Page Number

P
ag

e 
Ta

bl
e

Page
Offset

What is the physical 
address of virtual 
address 0x73E0?
– VPN = 7
– Entry 7 is invalid
– Virtual page must be 

paged into physical 
memory from disk

Page Table Example 2
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• Page table is large
– usually located in physical memory

• Load/store requires 2 main memory accesses:
– one for translation (page table read)
– one to access data (after translation)

• Cuts memory performance in half
– Unless we get clever…

Page Table Challenges
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• Small cache of most recent translations
• Reduces # of memory accesses for most

loads/stores from 2 to 1

Translation Lookaside Buffer (TLB)
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• Page table accesses: high temporal locality
– Large page size, so consecutive loads/stores likely to 

access same page
• TLB

– Small: accessed in < 1 cycle
– Typically 16 - 512 entries
– Fully associative
– > 99 % hit rates typical
– Reduces # of memory accesses for most loads/stores 

from 2 to 1

TLB
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Hit1

V

=

01

15 15

15

=

Hit1Hit0

Hit

19 19

19

Virtual
Page Number

Physical
Page Number

Entry 1

1    0x7FFFD     0x0000     1    0x00002     0x7FFF

Virtual
Address 0x00002       47C

1219

Virtual
Page Number

Page
Offset

V
Virtual

Page Number
Physical

Page Number

Entry 0

12Physical
Address 0x7FFF       47C

TLB

Example 2-Entry TLB
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• Multiple processes (programs) run at once
• Each process has its own page table
• Each process can use entire virtual address 

space
• A process can only access physical pages 

mapped in its own page table

Memory Protection
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• Virtual memory increases capacity
• A subset of virtual pages in physical memory
• Page table maps virtual pages to physical 

pages – address translation
• A TLB speeds up address translation
• Different page tables for different programs 

provides memory protection

Virtual Memory Summary
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• Processor accesses I/O devices just like 
memory (like keyboards, monitors, printers)

• Each I/O device assigned one or more 
address

• When that address is detected, data 
read/written to I/O device instead of 
memory

• A portion of the address space dedicated to 
I/O devices

Memory-Mapped I/O
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• Address Decoder:
– Looks at address to determine which 

device/memory communicates with the 
processor

• I/O Registers:
– Hold values written to the I/O devices

• ReadData Multiplexer:
– Selects between memory and I/O devices as 

source of data sent to the processor

Memory-Mapped I/O Hardware
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Processor MemoryAddress
MemWrite

WriteData
ReadData

WE

CLK

The Memory Interface
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Processor MemoryAddress
MemWrite

WriteData

ReadDataI/O
Device 1

I/O
Device 2

CLK

EN

EN

Address Decoder

WE

W
E

M

R
D

sel1:0

W
E

2
W

E
1 CLK

00
01
10

CLK

Memory-Mapped I/O Hardware
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• Suppose I/O Device 1 is assigned the address 
0xFFFFFFF4
– Write the value 42 to I/O Device 1
– Read value from I/O Device 1 and place in $t3

Memory-Mapped I/O Code
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• Write the value 42 to I/O Device 1 (0xFFFFFFF4)
addi $t0, $0, 42

sw $t0, 0xFFF4($0)

Processor MemoryAddress
MemWrite

WriteData

ReadDataI/O
Device 1

I/O
Device 2

CLK

EN

EN

Address Decoder

WE

W
E

M

R
D

sel1:0

W
E

2
W

E1 = 1

CLK

00
01
10

CLK

Memory-Mapped I/O Code
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• Read the value from I/O Device 1 and place in $t3
lw $t3, 0xFFF4($0)

Processor MemoryAddress
MemWrite

WriteData

ReadDataI/O
Device 1

I/O
Device 2

CLK

EN

EN

Address Decoder

WE

W
E

M

R
D

sel1:0  = 01

W
E

2
W

E
1 CLK

00
01
10

CLK

Memory-Mapped I/O Code
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• Embedded I/O Systems
– Toasters, LEDs, etc.

• PC I/O Systems

Input/Output (I/O) Systems
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• Example microcontroller: PIC32
– microcontroller
– 32-bit MIPS processor
– low-level peripherals include:

• serial ports
• timers
• A/D converters

Embedded I/O Systems
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// C Code

#include <p3xxxx.h>

int main(void) {

int switches;

TRISD = 0xFF00;      // RD[7:0] outputs 

// RD[11:8] inputs

while (1) {

// read & mask switches, RD[11:8]

switches = (PORTD >> 8) & 0xF;

PORTD = switches;  // display on LEDs

}

}

Digital I/O



Chapter 8 <79> 

• Example serial protocols
– SPI: Serial Peripheral Interface
– UART: Universal Asynchronous 

Receiver/Transmitter
– Also: I2C, USB, Ethernet, etc.

Serial I/O
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SPI: Serial Peripheral Interface
• Master initiates communication to slave by sending 

pulses on SCK
• Master sends SDO (Serial Data Out) to slave, msb first
• Slave may send data (SDI) to master, msb first
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UART: Universal Asynchronous Rx/Tx

• Configuration:
– start bit (0), 7-8 data bits, parity bit (optional), 1+ stop bits (1)
– data rate: 300, 1200, 2400, 9600, …115200 baud

• Line idles HIGH (1)
• Common configuration: 

– 8 data bits, no parity, 1 stop bit, 9600 baud
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// Create specified ms/us of delay using built-in timer
#include <P32xxxx.h>

void delaymicros(int micros) {
if (micros > 1000) {     // avoid timer overflow    

delaymicros(1000);    
delaymicros(micros-1000);

}  
else if (micros > 6){

TMR1 = 0;              // reset timer to 0    
T1CONbits.ON = 1;        // turn timer on
PR1 = (micros-6)*20;     // 20 clocks per microsecond 

// Function has overhead of ~6 us    
IFS0bits.T1IF = 0;     // clear overflow flag
while (!IFS0bits.T1IF);   // wait until overflow flag set 

}
}

void delaymillis(int millis) {
while (millis--) delaymicros(1000); // repeatedly delay 1 ms

}                                     // until done

Timers
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• Needed to interface with outside world
• Analog input: Analog-to-digital (A/D) conversion 

– Often included in microcontroller
– N-bit: converts analog input from Vref--Vref+ to 0-2N-1

• Analog output:
– Digital-to-analog (D/A) conversion

• Typically need external chip (e.g., AD558 or LTC1257)
• N-bit: converts digital signal from 0-2N-1 to Vref--Vref+

– Pulse-width modulation

Analog I/O
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Pulse-Width Modulation (PWM)

• Average value proportional to duty cycle

• Add high-pass filter on output to deliver average 
value
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Other Microcontroller Peripherals

• Examples
– Character LCD
– VGA monitor
– Bluetooth wireless
– Motors
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Personal Computer (PC) I/O Systems

• USB: Universal Serial Bus
– USB 1.0 released in 1996
– standardized cables/software for peripherals

• PCI/PCIe: Peripheral Component 
Interconnect/PCI Express
– developed by Intel, widespread around 1994
– 32-bit parallel bus
– used for expansion cards (i.e., sound cards, video 

cards, etc.)

• DDR: double-data rate memory
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Personal Computer (PC) I/O Systems

• TCP/IP: Transmission Control Protocol and 
Internet Protocol
– physical connection: Ethernet cable or Wi-Fi

• SATA: hard drive interface
• Input/Output (sensors, actuators, 

microcontrollers, etc.)
– Data Acquisition Systems (DAQs) 
– USB Links
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