
Chapter 8 <1>

Digital Design and Computer Architecture, 2nd Edition

Chapter 8

David Money Harris and Sarah L. Harris

Chapter 8 <2>

Chapter 8 :: Topics

• Introduction
• Memory System Performance

Analysis
• Caches
• Virtual Memory
• Memory-Mapped I/O
• Summary

Chapter 8 <3>

Processor MemoryAddress
MemWrite

WriteData
ReadData

WE

CLKCLK

• Computer performance depends on:
– Processor performance
– Memory system performance

Memory Interface

Introduction

Chapter 8 <4>

In prior chapters, assumed access memory in 1 clock
cycle – but hasn’t been true since the 1980’s

Processor-Memory Gap

Chapter 8 <5>

• Make memory system appear as fast as
processor

• Use hierarchy of memories
• Ideal memory:

– Fast
– Cheap (inexpensive)
– Large (capacity)

But can only choose two!

Memory System Challenge

Chapter 8 <6>

Memory Hierarchy

Technology Price / GB Access
Time (ns)

Bandwidth
(GB/s)

Cache

Main Memory

Virtual Memory

Capacity

S
pe

ed

SRAM $10,000 1

DRAM $10 10 - 50

SSD $1 100,000

25+

10

0.5

0.1HDD $0.1 10,000,000

Chapter 8 <7>

Exploit locality to make memory accesses fast
• Temporal Locality:

– Locality in time
– If data used recently, likely to use it again soon
– How to exploit: keep recently accessed data in higher

levels of memory hierarchy

• Spatial Locality:
– Locality in space
– If data used recently, likely to use nearby data soon
– How to exploit: when access data, bring nearby data

into higher levels of memory hierarchy too

Locality

Chapter 8 <8>

• Hit: data found in that level of memory hierarchy
• Miss: data not found (must go to next level)

Hit Rate = # hits / # memory accesses
= 1 – Miss Rate

Miss Rate = # misses / # memory accesses
= 1 – Hit Rate

• Average memory access time (AMAT): average time
for processor to access data
AMAT = tcache + MRcache[tMM + MRMM(tVM)]

Memory Performance

Chapter 8 <9>

• A program has 2,000 loads and stores
• 1,250 of these data values in cache
• Rest supplied by other levels of memory

hierarchy
• What are the hit and miss rates for the cache?

Memory Performance Example 1

Chapter 8 <10>

• A program has 2,000 loads and stores
• 1,250 of these data values in cache
• Rest supplied by other levels of memory

hierarchy
• What are the hit and miss rates for the cache?

Hit Rate = 1250/2000 = 0.625
Miss Rate = 750/2000 = 0.375 = 1 – Hit Rate

Memory Performance Example 1

Chapter 8 <11>

• Suppose processor has 2 levels of hierarchy:
cache and main memory

• tcache = 1 cycle, tMM = 100 cycles
• What is the AMAT of the program from

Example 1?

Memory Performance Example 2

Chapter 8 <12>

• Suppose processor has 2 levels of hierarchy:
cache and main memory

• tcache = 1 cycle, tMM = 100 cycles
• What is the AMAT of the program from

Example 1?

AMAT = tcache + MRcache(tMM)
= [1 + 0.375(100)] cycles
= 38.5 cycles

Memory Performance Example 2

Chapter 8 <13>

• Amdahl’s Law: the
effort spent increasing the
performance of a
subsystem is wasted
unless the subsystem
affects a large percentage
of overall performance

• Co-founded 3 companies,
including one called
Amdahl Corporation in
1970

Gene Amdahl, 1922-

Chapter 8 <14>

• Highest level in memory hierarchy
• Fast (typically ~ 1 cycle access time)
• Ideally supplies most data to processor
• Usually holds most recently accessed data

Cache

Chapter 8 <15>

• What data is held in the cache?
• How is data found?
• What data is replaced?

Focus on data loads, but stores follow same principles

Cache Design Questions

Chapter 8 <16>

• Ideally, cache anticipates needed data and
puts it in cache

• But impossible to predict future
• Use past to predict future – temporal and

spatial locality:
– Temporal locality: copy newly accessed data

into cache
– Spatial locality: copy neighboring data into

cache too

What data is held in the cache?

Chapter 8 <17>

• Capacity (C):
– number of data bytes in cache

• Block size (b):
– bytes of data brought into cache at once

• Number of blocks (B = C/b):
– number of blocks in cache: B = C/b

• Degree of associativity (N):
– number of blocks in a set

• Number of sets (S = B/N):
– each memory address maps to exactly one cache set

Cache Terminology

Chapter 8 <18>

• Cache organized into S sets
• Each memory address maps to exactly one set
• Caches categorized by # of blocks in a set:

– Direct mapped: 1 block per set
– N-way set associative: N blocks per set
– Fully associative: all cache blocks in 1 set

• Examine each organization for a cache with:
– Capacity (C = 8 words)
– Block size (b = 1 word)
– So, number of blocks (B = 8)

How is data found?

Chapter 8 <19>

• C = 8 words (capacity)
• b = 1 word (block size)
• So, B = 8 (# of blocks)

Ridiculously small, but will illustrate organizations

Example Cache Parameters

Chapter 8 <20>

7 (111)

00...00010000

230 Word Main Memory

mem[0x00...00]
mem[0x00...04]
mem[0x00...08]
mem[0x00...0C]
mem[0x00...10]
mem[0x00...14]
mem[0x00...18]
mem[0x00..1C]
mem[0x00..20]
mem[0x00...24]

mem[0xFF...E0]
mem[0xFF...E4]
mem[0xFF...E8]
mem[0xFF...EC]
mem[0xFF...F0]
mem[0xFF...F4]
mem[0xFF...F8]
mem[0xFF...FC]

23 Word Cache

Set Number

Address

00...00000000
00...00000100
00...00001000
00...00001100

00...00010100
00...00011000
00...00011100
00...00100000
00...00100100

11...11110000

11...11100000
11...11100100
11...11101000
11...11101100

11...11110100
11...11111000
11...11111100

6 (110)
5 (101)
4 (100)
3 (011)
2 (010)
1 (001)
0 (000)

Direct Mapped Cache

Chapter 8 <21>

DataTag

00
Tag Set

Byte
OffsetMemory

Address

DataHit

V

=

27 3

27 32

8-entry x
(1+27+32)-bit

SRAM

Direct Mapped Cache Hardware

Chapter 8 <22>

MIPS assembly code

addi $t0, $0, 5

loop: beq $t0, $0, done

lw $t1, 0x4($0)

lw $t2, 0xC($0)

lw $t3, 0x8($0)

addi $t0, $t0, -1

j loop

done:

DataTagV

00...001 mem[0x00...04]

0
0
0

0

0

00
Tag Set

Byte
OffsetMemory

Address
V

3
00100...00

1
00...00
00...00

1

mem[0x00...0C]
mem[0x00...08]

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

Miss Rate = ?

Direct Mapped Cache Performance

Chapter 8 <23>

MIPS assembly code

addi $t0, $0, 5

loop: beq $t0, $0, done

lw $t1, 0x4($0)

lw $t2, 0xC($0)

lw $t3, 0x8($0)

addi $t0, $t0, -1

j loop

done:

DataTagV

00...001 mem[0x00...04]

0
0
0

0

0

00
Tag Set

Byte
OffsetMemory

Address
V

3
00100...00

1
00...00
00...00

1

mem[0x00...0C]
mem[0x00...08]

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

Miss Rate = 3/15
= 20%

Temporal Locality
Compulsory Misses

Direct Mapped Cache Performance

Chapter 8 <24>

MIPS assembly code

addi $t0, $0, 5

loop: beq $t0, $0, done

lw $t1, 0x4($0)

lw $t2, 0x24($0)

addi $t0, $t0, -1

j loop

done:

DataTagV

00...001 mem[0x00...04]

0
0
0

0

0

00
Tag Set

Byte
OffsetMemory

Address
V

3
00100...01

0
0

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

mem[0x00...24]

Miss Rate = ?

Direct Mapped Cache: Conflict

Chapter 8 <25>

MIPS assembly code

addi $t0, $0, 5

loop: beq $t0, $0, done

lw $t1, 0x4($0)

lw $t2, 0x24($0)

addi $t0, $t0, -1

j loop

done:

DataTagV

00...001 mem[0x00...04]

0
0
0

0

0

00
Tag Set

Byte
OffsetMemory

Address
V

3
00100...01

0
0

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

mem[0x00...24]

Miss Rate = 10/10
= 100%

Conflict Misses

Direct Mapped Cache: Conflict

Chapter 8 <26>

DataTag

Tag Set
Byte

OffsetMemory
Address

Data

Hit1

V

=

01

00

32 32

32

DataTagV

=

Hit1Hit0

Hit

28 2

28 28

Way 1 Way 0

N-Way Set Associative Cache

Chapter 8 <27>

MIPS assembly code

addi $t0, $0, 5

loop: beq $t0, $0, done

lw $t1, 0x4($0)

lw $t2, 0x24($0)

addi $t0, $t0, -1

j loop

done:

DataTagV DataTagV

0 0

0
0

0

0
0

0

Way 1 Way 0

Set 3
Set 2
Set 1
Set 0

Miss Rate = ?

N-Way Set Associative Performance

Chapter 8 <28>

MIPS assembly code

addi $t0, $0, 5

loop: beq $t0, $0, done

lw $t1, 0x4($0)

lw $t2, 0x24($0)

addi $t0, $t0, -1

j loop

done:

DataTagV DataTagV

00...001 mem[0x00...04]00...10 1mem[0x00...24]

0
0

0

0
0

0

Way 1 Way 0

Set 3
Set 2
Set 1
Set 0

Miss Rate = 2/10
= 20%

Associativity reduces
conflict misses

N-Way Set Associative Performance

Chapter 8 <29>

DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV

Reduces conflict misses
Expensive to build

Fully Associative Cache

Chapter 8 <30>

• Increase block size:
– Block size, b = 4 words
– C = 8 words
– Direct mapped (1 block per set)
– Number of blocks, B = 2 (C/b = 8/4 = 2)

DataTag

00
Tag

Byte
OffsetMemory

Address

Data

V

00011011

Block
Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 0

Spatial Locality?

Chapter 8 <31>

DataTag

00
Tag

Byte
OffsetMemory

Address

Data

V

00011011

Block
Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 0

Cache with Larger Block Size

Chapter 8 <32>

addi $t0, $0, 5

loop: beq $t0, $0, done

lw $t1, 0x4($0)

lw $t2, 0xC($0)

lw $t3, 0x8($0)

addi $t0, $t0, -1

j loop

done:

Miss Rate = ?

Direct Mapped Cache Performance

Chapter 8 <33>

addi $t0, $0, 5

loop: beq $t0, $0, done

lw $t1, 0x4($0)

lw $t2, 0xC($0)

lw $t3, 0x8($0)

addi $t0, $t0, -1

j loop

done:

00...00 0 11

DataTag

00
Tag

Byte
OffsetMemory

Address

Data

V

00011011

Block
Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 000...001 mem[0x00...0C]

0
mem[0x00...08] mem[0x00...04] mem[0x00...00]

Miss Rate = 1/15
= 6.67%

Larger blocks
reduce compulsory misses
through spatial locality

Direct Mapped Cache Performance

Chapter 8 <34>

• Capacity: C
• Block size: b
• Number of blocks in cache: B = C/b
• Number of blocks in a set: N
• Number of sets: S = B/N

Organization
Number of Ways

(N)
Number of Sets

(S = B/N)
Direct Mapped 1 B

N-Way Set Associative 1 < N < B B / N

Fully Associative B 1

Cache Organization Recap

Chapter 8 <35>

• Cache is too small to hold all data of interest at once
• If cache full: program accesses data X & evicts data Y
• Capacity miss when access Y again
• How to choose Y to minimize chance of needing it again?
• Least recently used (LRU) replacement: the least recently

used block in a set evicted

Capacity Misses

Chapter 8 <36>

• Compulsory: first time data accessed
• Capacity: cache too small to hold all data of

interest
• Conflict: data of interest maps to same

location in cache

Miss penalty: time it takes to retrieve a block from
lower level of hierarchy

Types of Misses

Chapter 8 <37>

DataTagV
0

DataTagV
0

0

0

0

0

U

0 0

0
0

0
0

Way 1 Way 0

Set 3 (11)
Set 2 (10)
Set 1 (01)
Set 0 (00)

MIPS assembly

lw $t0, 0x04($0)
lw $t1, 0x24($0)
lw $t2, 0x54($0)

LRU Replacement

Chapter 8 <38>

DataTagV
0

DataTagV
0

0

0

0

0

U

mem[0x00...04]1 00...000mem[0x00...24] 100...010

0
0

0
0

DataTagV
0

DataTagV
0

0

0

0

0

U

mem[0x00...54]1 00...101mem[0x00...24] 100...010

0
0

0
1

(a)

(b)

Way 1 Way 0

Way 1 Way 0

Set 3 (11)
Set 2 (10)
Set 1 (01)
Set 0 (00)

Set 3 (11)
Set 2 (10)
Set 1 (01)
Set 0 (00)

MIPS assembly

lw $t0, 0x04($0)
lw $t1, 0x24($0)
lw $t2, 0x54($0)

LRU Replacement

Chapter 8 <39>

• What data is held in the cache?
– Recently used data (temporal locality)
– Nearby data (spatial locality)

• How is data found?
– Set is determined by address of data
– Word within block also determined by address
– In associative caches, data could be in one of several

ways

• What data is replaced?
– Least-recently used way in the set

Cache Summary

Chapter 8 <40>

• Bigger caches reduce capacity misses
• Greater associativity reduces conflict misses

Adapted from Patterson & Hennessy, Computer Architecture: A Quantitative Approach, 2011

Miss Rate Trends

Chapter 8 <41>

• Bigger blocks reduce compulsory misses
• Bigger blocks increase conflict misses

Miss Rate Trends

Chapter 8 <42>

• Larger caches have lower miss rates, longer
access times

• Expand memory hierarchy to multiple levels of
caches

• Level 1: small and fast (e.g. 16 KB, 1 cycle)
• Level 2: larger and slower (e.g. 256 KB, 2-6

cycles)
• Most modern PCs have L1, L2, and L3 cache

Multilevel Caches

Chapter 8 <43>

Intel Pentium III Die

Chapter 8 <44>

• Gives the illusion of bigger memory
• Main memory (DRAM) acts as cache for hard

disk

Virtual Memory

Chapter 8 <45>

• Physical Memory: DRAM (Main Memory)
• Virtual Memory: Hard drive

– Slow, Large, Cheap

Memory Hierarchy

Technology Price / GB Access
Time (ns)

Bandwidth
(GB/s)

Cache

Main Memory

Virtual Memory

Capacity

S
pe

ed

SRAM $10,000 1

DRAM $10 10 - 50

SSD $1 100,000

25+

10

0.5

0.1HDD $0.1 10,000,000

Chapter 8 <46>

Read/Write
Head

Magnetic
Disks

Takes milliseconds to seek correct location on disk

Hard Disk

Chapter 8 <47>

• Virtual addresses
– Programs use virtual addresses
– Entire virtual address space stored on a hard drive
– Subset of virtual address data in DRAM
– CPU translates virtual addresses into physical addresses

(DRAM addresses)
– Data not in DRAM fetched from hard drive

• Memory Protection
– Each program has own virtual to physical mapping
– Two programs can use same virtual address for different data
– Programs don’t need to be aware others are running
– One program (or virus) can’t corrupt memory used by

another

Virtual Memory

Chapter 8 <48>

Cache Virtual Memory
Block Page

Block Size Page Size

Block Offset Page Offset

Miss Page Fault

Tag Virtual Page Number

Physical memory acts as cache for virtual memory

Cache/Virtual Memory Analogues

Chapter 8 <49>

• Page size: amount of memory transferred
from hard disk to DRAM at once

• Address translation: determining physical
address from virtual address

• Page table: lookup table used to translate
virtual addresses to physical addresses

Virtual Memory Definitions

Chapter 8 <50>

Most accesses hit in physical memory
But programs have the large capacity of virtual memory

Virtual & Physical Addresses

Chapter 8 <51>

Address Translation

Chapter 8 <52>

• System:
– Virtual memory size: 2 GB = 231 bytes
– Physical memory size: 128 MB = 227 bytes
– Page size: 4 KB = 212 bytes

Virtual Memory Example

Chapter 8 <53>

• System:
– Virtual memory size: 2 GB = 231 bytes
– Physical memory size: 128 MB = 227 bytes
– Page size: 4 KB = 212 bytes

• Organization:
– Virtual address: 31 bits
– Physical address: 27 bits
– Page offset: 12 bits
– # Virtual pages = 231/212 = 219 (VPN = 19 bits)
– # Physical pages = 227/212 = 215 (PPN = 15 bits)

Virtual Memory Example

Chapter 8 <54>

• 19-bit virtual page numbers
• 15-bit physical page numbers

Virtual Memory Example

Chapter 8 <55>

Virtual Memory Example

What is the physical address
of virtual address 0x247C?

Chapter 8 <56>

Virtual Memory Example
What is the physical address
of virtual address 0x247C?

– VPN = 0x2
– VPN 0x2 maps to PPN 0x7FFF
– 12-bit page offset: 0x47C
– Physical address = 0x7FFF47C

Chapter 8 <57>

• Page table
– Entry for each virtual page
– Entry fields:

• Valid bit: 1 if page in physical memory
• Physical page number: where the page is located

How to perform translation?

Chapter 8 <58>

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Virtual
Address 0x00002 47C

Hit

Physical
Page Number

1219

15 12

Virtual
Page Number

P
ag

e
Ta

bl
e

Page
Offset

Physical
Address 0x7FFF 47C

VPN is index
into page table

Page Table Example

Chapter 8 <59>

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V
Physical

Page Number

P
ag

e
Ta

bl
e

What is the physical
address of virtual
address 0x5F20?

Page Table Example 1

Chapter 8 <60>

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Virtual
Address 0x00005 F20

Hit

Physical
Page Number

1219

15 12

Virtual
Page Number

P
ag

e
Ta

bl
e

Page
Offset

Physical
Address 0x0001 F20

What is the physical
address of virtual
address 0x5F20?
– VPN = 5
– Entry 5 in page table

VPN 5 => physical
page 1

– Physical address:
0x1F20

Page Table Example 1

Chapter 8 <61>

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Virtual
Address 0x00007 3E0

Hit

Physical
Page Number

19

15

Virtual
Page Number

P
ag

e
Ta

bl
e

Page
Offset

What is the physical
address of virtual
address 0x73E0?

Page Table Example 2

Chapter 8 <62>

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

V

Virtual
Address 0x00007 3E0

Hit

Physical
Page Number

19

15

Virtual
Page Number

P
ag

e
Ta

bl
e

Page
Offset

What is the physical
address of virtual
address 0x73E0?
– VPN = 7
– Entry 7 is invalid
– Virtual page must be

paged into physical
memory from disk

Page Table Example 2

Chapter 8 <63>

• Page table is large
– usually located in physical memory

• Load/store requires 2 main memory accesses:
– one for translation (page table read)
– one to access data (after translation)

• Cuts memory performance in half
– Unless we get clever…

Page Table Challenges

Chapter 8 <64>

• Small cache of most recent translations
• Reduces # of memory accesses for most

loads/stores from 2 to 1

Translation Lookaside Buffer (TLB)

Chapter 8 <65>

• Page table accesses: high temporal locality
– Large page size, so consecutive loads/stores likely to

access same page
• TLB

– Small: accessed in < 1 cycle
– Typically 16 - 512 entries
– Fully associative
– > 99 % hit rates typical
– Reduces # of memory accesses for most loads/stores

from 2 to 1

TLB

Chapter 8 <66>

Hit1

V

=

01

15 15

15

=

Hit1Hit0

Hit

19 19

19

Virtual
Page Number

Physical
Page Number

Entry 1

1 0x7FFFD 0x0000 1 0x00002 0x7FFF

Virtual
Address 0x00002 47C

1219

Virtual
Page Number

Page
Offset

V
Virtual

Page Number
Physical

Page Number

Entry 0

12Physical
Address 0x7FFF 47C

TLB

Example 2-Entry TLB

Chapter 8 <67>

• Multiple processes (programs) run at once
• Each process has its own page table
• Each process can use entire virtual address

space
• A process can only access physical pages

mapped in its own page table

Memory Protection

Chapter 8 <68>

• Virtual memory increases capacity
• A subset of virtual pages in physical memory
• Page table maps virtual pages to physical

pages – address translation
• A TLB speeds up address translation
• Different page tables for different programs

provides memory protection

Virtual Memory Summary

Chapter 8 <69>

• Processor accesses I/O devices just like
memory (like keyboards, monitors, printers)

• Each I/O device assigned one or more
address

• When that address is detected, data
read/written to I/O device instead of
memory

• A portion of the address space dedicated to
I/O devices

Memory-Mapped I/O

Chapter 8 <70>

• Address Decoder:
– Looks at address to determine which

device/memory communicates with the
processor

• I/O Registers:
– Hold values written to the I/O devices

• ReadData Multiplexer:
– Selects between memory and I/O devices as

source of data sent to the processor

Memory-Mapped I/O Hardware

Chapter 8 <71>

Processor MemoryAddress
MemWrite

WriteData
ReadData

WE

CLK

The Memory Interface

Chapter 8 <72>

Processor MemoryAddress
MemWrite

WriteData

ReadDataI/O
Device 1

I/O
Device 2

CLK

EN

EN

Address Decoder

WE

W
E

M

R
D

sel1:0

W
E

2
W

E
1 CLK

00
01
10

CLK

Memory-Mapped I/O Hardware

Chapter 8 <73>

• Suppose I/O Device 1 is assigned the address
0xFFFFFFF4
– Write the value 42 to I/O Device 1
– Read value from I/O Device 1 and place in $t3

Memory-Mapped I/O Code

Chapter 8 <74>

• Write the value 42 to I/O Device 1 (0xFFFFFFF4)
addi $t0, $0, 42

sw $t0, 0xFFF4($0)

Processor MemoryAddress
MemWrite

WriteData

ReadDataI/O
Device 1

I/O
Device 2

CLK

EN

EN

Address Decoder

WE

W
E

M

R
D

sel1:0

W
E

2
W

E1 = 1

CLK

00
01
10

CLK

Memory-Mapped I/O Code

Chapter 8 <75>

• Read the value from I/O Device 1 and place in $t3
lw $t3, 0xFFF4($0)

Processor MemoryAddress
MemWrite

WriteData

ReadDataI/O
Device 1

I/O
Device 2

CLK

EN

EN

Address Decoder

WE

W
E

M

R
D

sel1:0 = 01

W
E

2
W

E
1 CLK

00
01
10

CLK

Memory-Mapped I/O Code

Chapter 8 <76>

• Embedded I/O Systems
– Toasters, LEDs, etc.

• PC I/O Systems

Input/Output (I/O) Systems

Chapter 8 <77>

• Example microcontroller: PIC32
– microcontroller
– 32-bit MIPS processor
– low-level peripherals include:

• serial ports
• timers
• A/D converters

Embedded I/O Systems

Chapter 8 <78>

// C Code

#include <p3xxxx.h>

int main(void) {

int switches;

TRISD = 0xFF00; // RD[7:0] outputs

// RD[11:8] inputs

while (1) {

// read & mask switches, RD[11:8]

switches = (PORTD >> 8) & 0xF;

PORTD = switches; // display on LEDs

}

}

Digital I/O

Chapter 8 <79>

• Example serial protocols
– SPI: Serial Peripheral Interface
– UART: Universal Asynchronous

Receiver/Transmitter
– Also: I2C, USB, Ethernet, etc.

Serial I/O

Chapter 8 <80>

SPI: Serial Peripheral Interface
• Master initiates communication to slave by sending

pulses on SCK
• Master sends SDO (Serial Data Out) to slave, msb first
• Slave may send data (SDI) to master, msb first

Chapter 8 <81>

UART: Universal Asynchronous Rx/Tx

• Configuration:
– start bit (0), 7-8 data bits, parity bit (optional), 1+ stop bits (1)
– data rate: 300, 1200, 2400, 9600, …115200 baud

• Line idles HIGH (1)
• Common configuration:

– 8 data bits, no parity, 1 stop bit, 9600 baud

Chapter 8 <82>

// Create specified ms/us of delay using built-in timer
#include <P32xxxx.h>

void delaymicros(int micros) {
if (micros > 1000) { // avoid timer overflow

delaymicros(1000);
delaymicros(micros-1000);

}
else if (micros > 6){

TMR1 = 0; // reset timer to 0
T1CONbits.ON = 1; // turn timer on
PR1 = (micros-6)*20; // 20 clocks per microsecond

// Function has overhead of ~6 us
IFS0bits.T1IF = 0; // clear overflow flag
while (!IFS0bits.T1IF); // wait until overflow flag set

}
}

void delaymillis(int millis) {
while (millis--) delaymicros(1000); // repeatedly delay 1 ms

} // until done

Timers

Chapter 8 <83>

• Needed to interface with outside world
• Analog input: Analog-to-digital (A/D) conversion

– Often included in microcontroller
– N-bit: converts analog input from Vref--Vref+ to 0-2N-1

• Analog output:
– Digital-to-analog (D/A) conversion

• Typically need external chip (e.g., AD558 or LTC1257)
• N-bit: converts digital signal from 0-2N-1 to Vref--Vref+

– Pulse-width modulation

Analog I/O

Chapter 8 <84>

Pulse-Width Modulation (PWM)

• Average value proportional to duty cycle

• Add high-pass filter on output to deliver average
value

Chapter 8 <85>

Other Microcontroller Peripherals

• Examples
– Character LCD
– VGA monitor
– Bluetooth wireless
– Motors

Chapter 8 <86>

Personal Computer (PC) I/O Systems

• USB: Universal Serial Bus
– USB 1.0 released in 1996
– standardized cables/software for peripherals

• PCI/PCIe: Peripheral Component
Interconnect/PCI Express
– developed by Intel, widespread around 1994
– 32-bit parallel bus
– used for expansion cards (i.e., sound cards, video

cards, etc.)

• DDR: double-data rate memory

Chapter 8 <87>

Personal Computer (PC) I/O Systems

• TCP/IP: Transmission Control Protocol and
Internet Protocol
– physical connection: Ethernet cable or Wi-Fi

• SATA: hard drive interface
• Input/Output (sensors, actuators,

microcontrollers, etc.)
– Data Acquisition Systems (DAQs)
– USB Links

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87

