## MOSFETs

- nMOS
- Threshold Voltage:
- $\mathrm{V}_{\mathrm{T}}=1.0 \mathrm{~V}$ (for example)
- Transconductance Parameter:
- $\beta=100 \mu \mathrm{~A} / \mathrm{V}^{2} \mathrm{~V}$ (depends on process and geometry)
- OFF State $\mathrm{V}_{\mathrm{GS}}<=\mathrm{V}_{\mathrm{T}}$
- $\mathrm{I}_{\mathrm{DS}}=0[\mathrm{~A}]$
- ON State if $\mathrm{V}_{\mathrm{GS}}>\mathrm{V}_{\mathrm{T}}$
- "Linear" Region if $\mathrm{V}_{\mathrm{DS}}<\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}$
- $\mathrm{I}_{\mathrm{DS}}=\beta \cdot\left[\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right)-\mathrm{V}_{\mathrm{DS}} / 2\right] \cdot \mathrm{V}_{\mathrm{DS}}$
- Saturation Region if $\mathrm{V}_{\mathrm{DS}}>=\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}$
- $\mathrm{I}_{\mathrm{DS}}=\beta / 2 \cdot\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right)^{2}$


## nMOSFET IV Characteristic



## nMOS Transistor IV Characteristic

- nMOS
- as a 3 terminal device
- G - "gate"
- S - "source"
- D - "drain"
- charge carriers are electrons
- (negatively charged) electrons flow from source to the drain
- $\mathrm{I}_{\mathrm{DS}}$ is drain to source current
- conventional current

side note:
- In $p M O S$ the charge carriers are holes
- effectively a positive charge
- When nMOS and pMOS are used together it's known as CMOS which stands for Complementary MOS


Case 1: $\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}$
Is transistor in linear or saturation?
Let's find Ids if transistor is in saturation:

$$
\begin{aligned}
\mathrm{I}_{\mathrm{DS}} & =\beta / 2 \cdot\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right)^{2} \\
& =100 \mu \mathrm{~A} / \mathrm{V}^{2} / 2 \cdot(5 \mathrm{~V}-1 \mathrm{~V})^{2} \\
& =1.6 \mathrm{~mA}
\end{aligned}
$$

But this would mean voltage drop across $\mathrm{V}_{\mathrm{RL}}=\mathrm{I} \cdot \mathrm{R}=1.6 \mathrm{~mA}^{*} 20 \mathrm{k} \Omega=32 \mathrm{~V}$ !
This can't be, because the power supply ( $\mathrm{V}_{\mathrm{DD}}$ ) is 5 V . The maximum current which could flow through $R_{L}$ is $\mathrm{I}_{\mathrm{Rmax}}=\mathrm{V}_{\mathrm{DD}} / \mathrm{R}_{\mathrm{L}}=5 \mathrm{~V} / 20 \mathrm{k} \Omega=250 \mathrm{uA}$
[note: $\mathrm{I}_{\mathrm{R}}=\mathrm{I}_{\mathrm{DS}}$ ]


Case 2: $\mathrm{V}_{\mathrm{GS}}=0$
from transistor characteristic:
$\mathrm{I}_{\mathrm{DS}}=0$ (and thus $\mathrm{I}_{\mathrm{R}}=0$ )
Thus $\mathrm{V}_{\mathrm{R}}=0$ and $\mathrm{V}_{2}=5 \mathrm{~V}$
That is, the MOSFET is in the OFF state, so no current flows, and thus no current flowing in the resistor. If a resistor has no current flowing through it, the voltage (drop) across it is zero. Thus voltage and node 2 and voltage at node 1 are equal.

## ON Resistance

- Linear Region: $\mathrm{I}_{\mathrm{DS}}=\beta \cdot\left[\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right)-\mathrm{V}_{\mathrm{DS}} / 2\right] \cdot \mathrm{V}_{\mathrm{DS}}$
- If $\mathrm{V}_{\mathrm{DS}} / 2$ is very small compared to $\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}$, then $\mathrm{I}_{\mathrm{DS}}$ can be approximated as:
- $\mathrm{I}_{\mathrm{DS}}=\beta \cdot\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right) \cdot \mathrm{V}_{\mathrm{DS}}$
- This now looks like Ohm's Law, stated as $\mathrm{R}=\mathrm{V} / \mathrm{I}$
- $\mathrm{So}, \mathrm{R}_{\mathrm{ON}}=\mathrm{V}_{\mathrm{DS}} / \mathrm{I}_{\mathrm{DS}}=1 /\left[\beta \cdot\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right)\right]$


## nMOSFET IV Characteristic

MOSFET IV Curve for $\mathbf{V}_{\mathbf{G S}}=\mathbf{5 V}, \mathbf{V}_{\mathbf{T}}=\mathbf{1 V}, \beta=100 \mathrm{uA} / \mathrm{V}^{2}$


Diodes

## Diode IV Characteristic - Forward Bias



## Diode IV Characteristic - Reverse Bias



