MOSFETs

nMOS

- Threshold Voltage:
 - V_T = 1.0V (for example)
- Transconductance Parameter:
 - $\beta = 100 \mu A/V^2 V$ (depends on process and geometry)
- OFF State V_{GS} <= V_T
 - $I_{DS} = 0 [A]$
- ON State if $V_{GS} > V_T$
 - "Linear" Region if $V_{DS} < V_{GS}$ V_T
 - $I_{DS} = \beta \cdot [(V_{GS} V_T) V_{DS}/2] \cdot V_{DS}$
 - Saturation Region if $V_{DS} \ge V_{GS} V_T$

•
$$I_{DS} = \beta / 2 \cdot (V_{GS} - V_T)^2$$

nMOSFET IV Characteristic

nMOS Transistor IV Characteristic

nMOS

- as a 3 terminal device
 - G "gate"
 - S "source"
 - D "drain"
- charge carriers are electrons
 - (negatively charged) electrons flow from source to the drain
- I_{DS} is drain to source current
 - conventional current

side note:

- In *pMOS* the charge carriers are holes
 - effectively a positive charge
- When nMOS and pMOS are used together it's known as CMOS which stands for Complementary MOS

nMOS Inverter

Case 1: $V_{GS} = 5V$ Is transistor in linear or saturation? Let's find Ids if transistor is in saturation: $I_{DS} = \beta/2 \cdot (V_{GS} - V_T)^2$

$$p_{\text{DS}} = \beta / 2 \cdot (V_{\text{GS}} - V_{\text{T}})^2$$

= 100\(\mu\)A/V^2/2 \cdot (5V-1V)^2
= 1.6\(\mu\)A

But this would mean voltage drop across $V_{RL} = I \cdot R = 1.6 \text{mA*}20 \text{k}\Omega = 32 \text{V}!$ This can't be, because the power supply (V_{DD}) is 5V. The maximum current which could flow through R_L is $I_{Rmax} = V_{DD}/R_L = 5 \text{V}/20 \text{k}\Omega = 250 \text{uA}$

[note: $I_R = I_{DS}$]

nMOS Inverter

Case 2: $V_{GS} = 0$ from transistor characteristic: $I_{DS} = 0$ (and thus $I_R=0$) Thus $V_R = 0$ and $V_2 = 5V$

That is, the MOSFET is in the OFF state, so no current flows, and thus no current flowing in the resistor. If a resistor has no current flowing through it, the voltage (drop) across it is zero. Thus voltage and node 2 and voltage at node 1 are equal.

ON Resistance

- Linear Region: $I_{DS} = \beta \cdot [(V_{GS} V_T) V_{DS}/2] \cdot V_{DS}$
 - If $V_{DS}/2$ is very small compared to $V_{GS} V_T$, then I_{DS} can be approximated as:
 - $I_{DS} = \beta \cdot (V_{GS} V_T) \cdot V_{DS}$
- This now looks like Ohm's Law, stated as R=V/I
 - So, $R_{ON} = V_{DS} / I_{DS} = 1 / [\beta \cdot (V_{GS} V_T)]$

nMOSFET IV Characteristic

Diodes

Diode IV Characteristic – Forward Bias

Diode IV Characteristic – Reverse Bias

