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1.1 The Role of Computers in Modern Society

There is no doubt about the significance of computers in our daily lives.
Imagine where we would be without personal computers (PCs) to handle
our daily chores at work and home, and as a source of entertainment. Al-
though the importance of computers in modern society is unmistakeable,
there is another facet of computers that most people are only vaguely aware
of – embedded systems or computers. Unlike general-purpose desktop and
laptop computers, embedded systems are designed to perform one or a few
dedicated functions, and more importantly, are embedded as a part of a
complete device that often includes hardware and other mechanical parts.
For example, remote keyless entry systems for automobiles have embedded
computers that can send and receive special code to lock/unlock doors as
well as other functionalities.

The meaning of an embedded system is hard to define exactly and has
evolved over the years. For example, systems that control household ap-
pliances (e.g., microwave ovens, washing machines, dishwashers, etc.), au-
tomobiles (e.g., Anti-lock Braking System, rain sensor, Electronic Stability
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2 CHAPTER 1. INTRODUCTION

Control, etc.), and medical equipment (e.g., patient monitoring systems)
still follow the classic definition of embedded systems that perform special-
purpose tasks. However, a more recent meaning of an embedded system is
some combination of computer hardware and software, either fixed in capa-
bility or programmable, that is specifically designed for a particular kind of
application device. These devices include Portable Media Players (PMPs)
and mobile phones, and more recently, smartphones and pad/tablet devices
with mobile operating systems (e.g., Google Android, Microsoft Windows
Mobile, Apple iOS, RIM Blackberry, etc.) and the ability to download
and install apps for additional functionality. This increase in flexibility
has blurred the distinction between special-purpose embedded systems and
general-purpose computers such as desktops and laptops. Therefore, a more
accurate meaning of an embedded system is any system with a computer
that is not a desktop or laptop!

So why are we focusing on embedded systems when most of us inter-
act with desktops and laptops? Despite familiarity and popularity of PCs,
more than 95% of devices with computers are embedded systems. For ex-
ample, a high-end car can have over 100 embedded processors controlling
everything from electronic throttle to climate control. Even a typical house
contains embedded systems to control Heating, Ventilating, and Air Con-
ditioning (HVAC). In fact, embedded systems account for the most of the
world’s production of microprocessors! Therefore, understanding how they
are programmed and how their internal structure is organized are essential
for future engineers and computer scientists.

1.2 Spectrum of Computers and Their Processors

The spectrum of computers varies as much as their intended applications.
General-Purpose systems, such as desktops, laptops, and servers, are de-
signed to handle a multitude of applications from document processing to
video conferencing. As such, these systems contain an array of peripheral
devices controlled by a powerful processor. Figure 1.1(a) illustrates the or-
ganization of a typical desktop system (server and laptop systems are also
fundamentally similar). At the time of the writing of this book, such a
system is controlled by a processor or Central Processing Unit (CPU) with
level-1 (L1) and level-2 (L2) caches, and in some cases level-3 (L3) cache,
and clocked at 2∼3 GHz. They also support expandable memory up to
several Gigabytes (GB) and even have a separate chip, called Graphics Pro-
cessing Unit (GPU), to process graphics for displays. Besides the processor,
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Figure 1.1: Desktop versus Embedded systems.

another central part of a desktop system is a “chip set” containing a Memory
Controller and I/O Controller , also referred to as North Bridge and South
Bridge, respectively. These two controllers allow the high-speed part of the
system, i.e., processor, memory, and graphics, to be interfaced to the slower
I/O peripherals such as USB devices, hard-disks, and wired (i.e., Ethernet)
and wireless network (WLAN) connections.

In contrast, an embedded system shown in Figure 1.1(b) is a self-contained
System-on-Chip (SoC) that contains all the basic components needed to
control I/O devices. The complexity, performance, power, and cost require-
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ments of these embedded systems depend on their intended purpose. For
example, a low-end embedded system includes an 8-bit or a 16-bit processor
running at few to tens of MHz with Instruction and Data Memories of tens
to hundreds of Kilobytes (KB). Unlike desktop systems, the I/O devices
they control are usually simple devices, such as sensors, motors, and other
mechanical devices, and are low power due to their size and speed. On the
other hand, high-end embedded systems contain 32-bit processors clocked at
several hundred MHz range with memories in the order of Megabytes (MB).
Examples of such systems include PMPs, GPSs, car infotainment systems,
feature phones, etc.

In recent years, a new class of mobile devices have emerged that strad-
dle between embedded systems and general-purpose computers. These de-
vices include smartphones and pad/tablet devices, which run at GHz range
clock with large memories and resemble their desktop/laptop counterparts
by having operating systems, graphics processors, and even multiple cores.
From a software perspective, these ultra high-end embedded systems with
vast arrays of Applications Programming Interfaces (APIs) can be viewed
as programming resource constrained general-purpose computers. In fact,
some of these mobile devices are based on processors from low-end general-
purpose computers, e.g., Intel Atom processor. Therefore, the line between
embedded systems and general-purpose computers is becoming more and
more blurred.

1.3 Objectives of the book

One of the major objectives of this book is to understand the interrelation-
ship between hardware and software. Most students new to modern com-
puting concepts believe these are two distinct topics. However, this is not
the case at all and the topics covered in this book will show that computer
organization and assembly language is the interface where both electrical
engineering and computer science disciplines merge.

In order to understand why this is the case, consider the hierarchical
layers of problem solving in computing systems shown in Figure 1.2. From
the perspective of a software designer, a problem statement is defined using
a language-independent algorithm or a psuedocode. Then, the algorithm is
coded using a high-level language, such as C/C++. On the other hand, a
hardware designer implements basic digital components using existing cir-
cuit technology, and then these components are organized into a microar-
chitecture to implement a processor. The point at which both of these
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perspectives merge is the Instruction Set Architecture (ISA), which is the
basic set of operations or assembly instructions supported by the processor.

How efficiently a program runs on the processor depends on how well
the compiler translates the high-level language program to a sequence of
assembly instructions, i.e., an assembly program, as well as how well the
microarchitecture that executes the assembly instructions is designed. This
requires good understanding of both software and hardware. For example,
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compiler writers have to be very familiar with the ISA of the processor to
perform machine-dependent optimizations to minimize program execution
time. On the other hand, a hardware designer has to understand the oper-
ations required by the ISA to implement a microarchitecture to execute the
assembly program as fast as possible within given physical constraints such
as complexity, memory size, and in some cases power.

Therefore, the focus of this book is the interfaces between language and
ISA, and between ISA and microarchitecture. However, the topics covered
by these layers have a much broader implication on both software and hard-
ware designers. Understanding the essence of these concepts makes both
software and hardware designers better at what they do. For example, pro-
grammers can write better programs by understanding how processor exe-
cute their programs, while hardware designers can design better processors
by understanding the operational requirements of programs.

1.4 Roadmap for the Rest of the Book

The chapters in this book are organized to cover the various topics of the
hierarchical layers of a computing system.

Chapter 2 discusses the fundamental concepts of Assembly Language
programming. We start off by discussing what assembly language is and how
it is used to directly interact with processors. This introduction is followed
by a discussion of the core of assembly language and processor design —
Instruction Set Architecture (ISA). We discuss the variety of factors that
influence the design of an ISA and their effect on programming as well
as processor performance. Afterwards, we discuss how instructions in an
ISA are represented as an Instruction format consisting of different fields.
Finally, the chapter concludes with an example ISA design to help students
understand how the various issues presented in this chapter are considered.

Chapter 3 presents the basic computer organization concepts. This is
done by first discussing the major components required by a processor, i.e.,
datapath, control unit, memory, and Input/Output (I/O). This is followed
by a discussion of data transfer operations that dictate how these compo-
nents interact. The final section of this chapter presents a simple processor
design based on the example ISA presented in Chapter 2.

Chapter 4 presents assembly language programming using AVR micro-
controllers. The chapter starts with important concepts that distinguish
between high-level language programming and assembly language program-
ming, and issues programmers have to be aware of when they are program-
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ming in assembly. This is followed by a discussion on the characteristics
of the AVR architecture, which includes registers and memories, addressing
modes, and instructions. Throughout this discussion, numerous example
pieces of assembly code are used to illustrate not only assembly program-
ming techniques but also how they are related to equivalent high-level lan-
guage code. This chapter also includes a discussion of how AVR assembly
instructions are mapped to machine instructions. The purpose of this dis-
cussion is to show how symbolic representation of assembly instructions are
mapped to 0’s and 1’s in the instruction format. This is important for un-
derstanding how a processor decodes and executes instructions, which will
be covered in Chapter 8. The chapter also covers assembly coding tech-
niques, which will help you to write well-structured assembly codes that are
easy to understand and debug. Then, more advanced examples of assembly
code are presented to illustrate how any high-level language programming
constructs can be implemented in assembly. Finally, the chapter concludes
by illustrating how an assembly program is mapped to binaries revealing
what a processor has to do to fetch and decode instructions of a program.

Chapter 5 discusses one of the most important functionalities of micro-
controllers – I/O! We first discuss the basic I/O capabilities of the AVR
architecture, including ports and control registers for setting up these ports.
Then, the concept of interrupt is introduced with an elaborate example of
controlling Tekbots. The rest of the chapter presents various peripheral
features available in the AVR architecture, which includes Timers/Coun-
ters, Universal Synchronous Asynchronous Receiver/Transmitter (USART),
Analog-to-Digital Converter (ADC), Serial Peripheral Interface (SPI), Two-
Wire Interface (TWI), and Analog Comparator.

Chapter 6 presents embedded C programming. This chapter reviews
not only the basics of C programming language for completeness, but also
presents a set of extensions to address common issues among different em-
bedded systems. These issues include I/O operations, multiple distinct
memories, embedding assembly, and fixed-point arithmetic.

Chapter 7 discusses the various digital components in a processor. These
include multiplexers, decoders, memory elements, registers, and memory.
This chapter is meant to be not only a review of basics of digital design,
but also to emphasize the design of the critical components in a processor
architecture.

Chapter 8 presents the organization of the AVR architecture. This chap-
ter is unique because, to the best of my knowledge, it is the only published
detailed description of the inner workings of the AVR architecture. The
chapter starts with explanation of the various AVR instruction formats and
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their fields. This is followed by a description of all the digital components
in the microarchitecture. We then illustrate how AVR assembly instruc-
tions are executed and their timing requirements. The design of a Control
Unit that orchestrates instruction execution is then discussed. Finally, the
concept of pipelining is explained and how it is used in the AVR microar-
chitecture.

Finally, Chapter 9 discusses the workhorse of a processor — Arithmetic
and Logic Unit (ALU). We first review number systems and basic shift op-
erations. This is followed by a discussion of adders, which is the core of
an ALU, and surrounding logic that allows for implementation of a basic
ALU. The ALU design is then extended to support fixed-point multiplica-
tion, including fast multiplication, and division. The chapter concludes with
algorithms for Floating-point operations.
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Assembly Language
Fundamentals

Contents
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2.1 Introduction

Most of us write programs using high-level languages, such as C/C++, Java,
or Fortran, and rely on sophisticated software libraries that implement com-
plex functions to simplify our programming tasks. These programs are then
compiled using another sophisticated program, i.e., compiler, to generate
binary executables that processors understand. During execution, programs
may also rely on run-time support provided by an operating system (OS),
such as system calls, or syscalls, that provide services for process control,
file and device management, and communication. This allows us to con-
centrate only on programming without worrying about how the hardware
understands and processes our algorithmic intent. However, designing a
processor or writing a compiler requires the understanding of how low-level
commands or instructions translated from high-level languages are executed
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by the processor. These low-level instructions are called machine instruc-
tions and represent machine code or machine language, which is the language
the hardware understands.

Machine instructions consist of 0’s and 1’s and thus are hard to under-
stand and program by humans. A much more readable form of machine
language, called assembly language, uses mnemonics to refer to machine
code instructions. Mnemonics are a symbolic representation of the machine
code and other data needed to program a particular processor architecture,
and thus make it easier for programmers to remember individual machine in-
structions, registers, memory locations, etc. An assembly language is unique
to each processor manufacturer, and unlike high-level languages, it is not
portable.

Even though compilers (or an interpreter in the case of Java) do all the
hard work to translate high-level languages to the machine language specific
to a particular processor, the concept of assembly language programming
is important for a number of reasons. First, the characteristics of assem-
bly instructions, and thus machine instructions, strongly influence processor
design. Therefore, a processor designer must be well versed in assembly pro-
gramming and understand the features of assembly instructions to design
and implement efficient and fast processors. Second, compiler writers must
understand assembly language programming to map machine independent
intermediate representation to machine dependent code. Third, writing soft-
ware that interacts directly with the hardware, such as device drivers and
interrupt facilities, requires a clear understanding of Input/Output (I/O)
operations provided by an assembly language. Fourth, writing real-time ap-
plications that require precise timing and responses, such as simulations,
flight navigation systems, and medical equipment, requires greater visibility
and control over processing details that only assembly languages can pro-
vide. Finally, all programmers can write better programs by knowing how
their software is executed by a processor.

Therefore, this chapter discusses the fundamental concepts of assembly
language, starting with how assembly instructions are represented, what
and how much information is contained in the instructions, and how these
design choices affect the instruction format, and thus code density and the
power of the instructions. Later in Chapter 4, we will study in detail the
assembly language of the AVR microcontroller. We will then see in Chapter
8 how the characteristics of AVR assembly language influence the design of
a processor.
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Processor
Hardware

ISA

Application software

OS

Compiler
Assembler

I/O
Hardware

Figure 2.1: Simplified hierarchical view of software and hardware, and the
role of ISA.

2.2 How Do We Speak the Language of the Ma-
chine

Figure 2.1 shows the hierarchical relationship between software and hard-
ware. Applications written in high-level languages rely on compilers to gen-
erate binaries and, if necessary, request run-time services from an operating
system. Applications can also be written in assembly language that are
assembled into binaries. Regardless of whether high-level or assembly lan-
guage is used, the resulting binary executables are in the format that the
processor hardware can understand and execute.

The Instruction Set Architecture (ISA) is the portion of the processor
visible to a programmer or a compiler. Therefore, ISA basically acts as
the interface for either programmers to directly write or compiler to trans-
form processor-independent programs into processor-dependent programs,
or machine language programs. The concept of ISA is important because
it defines the basic set of instructions performed by the processor and the
only information that the processor understands. Thus, assembly programs
are written using instructions from the ISA.
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2.3 Instruction Set Architecture

Now that the important layer or gateway to the processor hardware has been
exposed, we are ready to discuss the the factors that influence the design of
an ISA and how they affect programmers or compilers as well as processor
design.

Assembly programmers and compiler writers write software based on ex-
isting ISAs, e.g., x86, AVR, ARM, etc. However, how is an ISA designed
and what is the thought process that goes into coming up with an ISA?
A designer of a new ISA has to contend with a variety of factors that af-
fect programming as well as speed, cost, and complexity of the processor
hardware. These factors include

• Operations provided in the ISA;
• Number of explicit operands named per instruction;
• Operand locations and how they are specified; and
• Type and size of operands.

The following subsections discuss each of these factors in more detail.

2.3.1 Operations in the ISA

What should be the set of instructions provided by an ISA? This choice can
be akin to buying a car. There are so many choices including the type of
brand and model, and the options available in the car. For the design of an
ISA, some important criteria are

• Functional completeness;
• Efficiency (power) of the instruction; and
• Programming vs. hardware complexity.

The following discusses these issues in more detail.

Functional Completeness

Functional completeness refers to the need for an ISA to provide a compre-
hensive set of instructions to implement any given program. The degree of
functional completeness will vary from one ISA to another. For example,
should an ISA have instructions to handle floating-point operations? The
answer depends on the purpose of the processor. If applications running
on a processor require extensive floating-point operations, then it may be
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advantageous from a performance standpoint to provide floating-point in-
structions with accompanying hardware (i.e., floating-point unit). This will
in turn improve speed but increase complexity and cost.

The categories of instructions offered by an ISA define the functional
completeness of a processor. The different types of instructions that an ISA
may have are:

• Data transfer
• Arithmetic
• Logical
• Control transfer
• I/O
• System
• Floating-point
• Decimal
• String

Among these different types of instructions, most processors provide the
first five instruction categories (data transfer, arithmetic, logical, control
transfer, and I/O). Data transfer instructions allow information to be copied
from one location to another either in the processor’s internal memory (reg-
isters) or in the external memory. A processor without these instructions
would be rendered useless since data required by applications reside in the
memory (possibly after being transferred from a storage device, such as a
flash drive or a hard disk, to memory). Arithmetic instructions perform
operations on numeric data (e.g., add, subtract, etc.). Logical instruction
perform Boolean and other non-numerical operations (e.g., AND, OR, NOT,
etc.). A processor without arithmetic and logic instructions would defeat the
whole purpose of having a computer in the first place. Control transfer in-
structions change the sequence of program execution (jump and conditional
branches). These instructions are crucial for implementing conditional state-
ments, such as IF-THEN-ELSE and CASE statements provided in high-level
languages. Last but not least are I/O instructions, which cause information
to be transferred between the processor and external I/O devices (e.g., dis-
play, keyboard, mouse, printer, sensors, etc.). Without these instructions,
computers would not be able to communicate with the outside world.

Whether or not the other types of instructions are needed depends on
the application of the processor. System instructions are used for operating
system calls. Syscalls act as an interface between a user program and the
operating system to provide services such as dynamic memory management
and I/O operations. It is obvious that syscalls are necessary for processors on
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personal computers (PCs) that run Windows, Mac OS X, or Linux operating
systems. However, embedded systems designed to control say engine idling
does not require an operating system and thus syscalls. The same is true for
floating-point instructions. An embedded system designed to process only
integer data will not require floating-point instructions. If these instruction
are needed, they can be implemented using existing instructions at a cost
of higher programming complexity and lower speed. Decimal instructions
directly manipulate decimal numbers. Typically, decimal numbers are first
converted to binary numbers before performing arithmetic operations, and
then converted back to decimal numbers before they are stored in a file or
printed on a display. The conversion between decimal and binary is time
consuming. Therefore, having instructions that can directly manipulate
decimal numbers would be beneficial in terms of speed. However, decimal
operations are different from binary operations, and thus the processor has
to be augmented with special hardware to handle such instructions. The
same is true for string instructions that allow manipulations of characters.
Nonetheless, encoding these instructions into the ISA increases the complex-
ity of the processor and may not be worth it if these operations are rarely
used.

Instruction Efficiency

Efficiency or power of an instruction refers to what a single assembly in-
struction can accomplish. Some instructions are very powerful and can
implement complex tasks. Other instructions are simple and require more
instructions to accomplish the same task. The tradeoff between two options
depends again on how the processor will be used. For example, a processor
designed for simple tasks, such as low-end embedded processors for motor
control and light and rain sensors, will not need to be high-speed and thus
can be programmed with less powerful instructions. On the other hand,
processors designed for PCs require powerful instructions running at high
speeds.

Programming vs. Hardware Complexity

Simplicity of hardware design and/or programming is directly related to
the two previous mentioned factors. From a programmer’s point-of-view,
powerful instructions will make programming easier while the complexity
of the hardware increases. On the other hand, simple instructions leads to
more complex programs, but results in simpler hardware.
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Based on the aforementioned discussions, the proper tradeoff between
instruction efficiency and simplicity in hardware design may not be obvious
at this point. The answer lies in the characteristics of programs and how of-
ten these complex instructions are encountered. When complex instructions
are frequently encountered, it may be better to dedicate hardware to handle
these instructions. However, years of research on processor design have also
shown that instruction sets based on the Reduced Instruction Set Computer
(RISC) leads to better performance with minimal affect on programming.
The RISC concept is based on the fact that simple and common instructions
provide higher performance when this simplicity allows for much faster exe-
cution of each instruction. Therefore, with few exceptions (e.g., x86), most
modern microprocessors are RISC-based.

2.3.2 Number of Operands per Instruction

The second factor in ISA design is the number of operands explicitly speci-
fied in the instruction. An operand refers to the data to be manipulated or
operated on by an instruction, and can be in a register, in a memory location,
or a literal constant. The number of operands to be specified in an instruc-
tion format is at most three (two source operands and a destination) due
to the nature of binary operations performed by the Arithmetic and Logic
Unit (ALU). The number of operands associated with each instruction can
be considered in terms of the following issues:

• Control circuit complexity (decoding);
• Storage required for instructions (code density);
• Power of instructions; and
• Number of instructions required to perform a given task.

In order to illustrate this trade-off, consider the following example add
instruction where x, y, and z represent addresses of memory locations or
registers.

• 4-address instruction

add z, x, y, goto q

x and y represent the addresses of the two source operands and z represents
the address of the destination and is equivalent to the operation z← x+y. In
addition to the add operation, this instruction also defines a target address q,
which will be the address of the next instruction to be fetched and executed.
This 4-address instruction format is the most powerful but explicitly defines
x, y, z, and q within a fixed size instruction. Why is this an issue? Suppose
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x, y, and z are memory addresses and the size of the memory is 4 KB.
Then, the instruction format requires 12 bits × 4 = 48 bits to specify just
the operands and additional bits to specify that this is an add operation.
Clearly, this cannot be supported even with a 32-bit instruction format.

The way ISA designers get around this problem is to get rid of q and use
registers rather than memory locations. This leads to the following 3-address
instruction format:

• 3-address instruction

add z, x, y; q is implied

This format is almost identical to the 4-address instruction format discussed
above, but omits q. The reasoning behind this is simple. Most programming
languages are imperative. That is, statements in high-level languages and
thus instructions in assembly language are executed in step-wise, sequential
manner. Therefore, after the current instruction is executed, the likelihood
that the instruction after the current instruction will be executed is high.
Thus, rather than explicitly defining q in each instruction, this information
is maintained in a special register called Program Counter (PC) and its
content is incremented after each instruction execution. In addition, using a
small number of General Purpose Registers (GPRs), say 16 of them, reduces
the number of bits required to specify an operand from 12 bits for 4 KB of
memory to 4 bits for 16 registers. Now the three operands can be specified
in a 32- or even 16-bit instruction format. The 3-address instruction format
is typically used in high-end microprocessors for PCs and mobile computing
platforms, such as cell-phones, tablet computers (e.g., iPad), and Portable
Media Players (e.g., iPod).

Although a 32-bit instruction format can easily support three addresses,
supporting these with a 16-bit instruction formats is difficult unless the
number GPRs is significantly reduced. However, decreasing the number
of GPRs reduces the flexibility of having registers in the first place. The
following 2-address instruction format reduces the bit requirement and yet
retains the power of a 3-address instruction format:

• 2-address instruction

add x, y

This format is similar to the 3-address instruction format discussed above,
but both destination and one of the source operands is defined by x and is
equivalent to the operation x← x+ y. This format can easily be supported
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with 16 bits. The 2-address instruction format is typically used in mid-range
microcontrollers, e.g., AVR.

Some processors use the 1-address instruction format shown below:

• 1-address instruction: Accumulator-based architecture

add x

This format defines only one explicit operand, and thus the length of the in-
struction format is very short. The second operand as well as destination are
implicitly defined by a special register called the Accumulator (AC). There-
fore, this instruction performs the operation AC← AC+x. The disadvantage
of this instruction format is that AC is involved in every operation, and thus
additional instructions are needed to move the data between AC and a reg-
ister or memory location. This leads to more instructions to accomplish the
same task compared to using either 3-address or 2-address instruction for-
mats. This instruction format is very common in low-end microcontrollers,
e.g., 8051.

The following instruction format does not define any operands:

• 0-address instruction: Stack-based architecture

add

This is a unique format in that no operands are explicitly defined. Instead,
a stack is implied where an operation is performed by popping the top two
locations of the stack representing the two source operands, and the result
is pushed onto the stack. There are no processors that use this instruc-
tion format. However, the concept of stack-based arithmetic is used in HP
calculators based on Reverse Polish Notation (RPN).

2.3.3 Operand Locations and How They are Specified

An operand can reside in an instruction, a register, or a memory location.
Operand locations can be specified in a number of different ways, and the
way this is done is called addressing modes. All ISAs support the following
set of addressing modes:

• Immediate addressing
• Direct addressing

– Memory direct addressing
– Register direct addressing

• Indirect addressing
– Memory indirect addressing
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Instruction

Operand

Figure 2.2: Immediate addressing mode - the operand is contained within
the instruction.

Memory
2k  x n-bit

Instruction

Operand

EA

EA

(a) Memory direct addressing.

Register File
2r  x n-bit

Instruction

Operand

RI

EA

(b) Register direct addressing.

Figure 2.3: Direct addressing - the operand is in a memory location or a
register.

– Register indirect addressing

When an operand is located within the instruction, as shown Figure
2.2, it is called immediate addressing . This addressing mode allows for fast
access to operands and is useful for coding constants or literal values that
do not vary during program execution.

Figure 2.3 shows direct or absolute addressing that refers to operands
in a memory location or a register. This addressing mode is used to access
variables in memory. Figure 2.3(a) shows memory direct addressing , where a
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(a) Memory indirect addressing.
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Instruction
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RI

(b) Register indirect addressing.

Figure 2.4: Indirect addressing.

k-bit address, known as an effective address (EA), encoded in an instruction
directly refers to an operand in memory. Figure 2.3(b) shows register direct
addressing or simply register addressing, where an r-bit register address,
known as a register identifier (RI), encoded in an instruction refers to an
operand in a register file, which is an array of registers. Therefore, either EA
or RI has to be encoded within the fixed size instruction, which is typically
16 or 32 bits.

Figure 2.4 shows indirect addressing , which uses a level of indirection to
refer to operands in a memory location or a register. This addressing mode
is used to implement pointers to variables in memory. Figure 2.4(a) shows
an example of memory indirect addressing . Unlike memory direct address-
ing shown in Figure 2.3(a), the effective address is in a memory location
instead of being encoded in the instruction. Figure 2.4(b) shows an example



20 CHAPTER 2. ASSEMBLY LANGUAGE FUNDAMENTALS

of register indirect addressing , where the effective address is in a register.
These figures illustrate the important distinction between direct addressing
and indirect addressing; an effective address in indirect addressing can be
thought of as a pointer to either an array or a structure and any element
within these data structures can be accessed by manipulating the effective
address. Note that this would not be possible with direct addressing since
EA or RI encoded within the instruction would have to be modified. This
would amount to a self modifying code, where the code modifies its own
instructions while executing, which is not a recommended coding practice.

There are also variations of indirect addressing modes, including pre-
decrement, post-increment, and displacement, which allow the effective ad-
dress to be decremented, incremented, and added with a displacement, re-
spectively. These addressing modes as well as others will be discussed in
more detail when we present the AVR Assembly Language in Chapter 4.

2.3.4 Operand Type and Size

Operand size can be 8-bit, 16-bit, 32-bit, or 64-bit depending on the pro-
cessor. Note that we are talking about operand size, not instruction size,
which again is typically either 16-bit or 32-bit. When manufacturers refer to
n-bit processors, n refers to the size of the operand. For example, the 8-bit
AVR microcontroller discussed in Chapter 4 has an operand size of 8 bits.
Obviously, the larger the operand size, the more powerful the instructions.
For example, a 32-bit processor that support 32-bit operands will typically
have 32-bit registers and 32-bit memory locations. Therefore, 32-bit data
can be manipulated with a single instruction.

The reason 8-bit and 16-bit processors exist is that most applications
that these processor were designed for do not require large operand sizes.
For example, embedded systems for temperature sensor or analog-to-digital
conversion only require 8-bit or 16-bit data depending on the desired reso-
lution. Now, this does not mean 8-bit or 16-bit processors cannot support
32-bit operations. It just means that more instructions are needed by these
processors to perform an operation that can be done with a single 32-bit
instruction.

2.4 Instruction Format

Based on the aforementioned discussions, a variety of information has to be
conveyed to the processor through assembly instructions. Instruction for-
mat is the interface between a program language and a processor hardware,
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opcode field1 ... fieldk

Figure 2.5: Instruction format.

and its layout is composed of fields of binary numbers. Figure 2.5 shows
an example of a generic instruction format, which for modern processors
is typically either 16-bit or 32-bit wide. It consists of an operation code
(opcode) field and a number of address fields, each representing a specific
item needed by the instruction, such as register identifier, memory address,
constant, etc.

The opcode specifies an operation, such as add, subtract, shift, branch,
etc. Each address field specifies the location of an operand either in a register
or a memory location. The size of the opcode field is dictated by the number
of operations the ISA supports. For example, an opcode field of k bits can
encode up to 2k different operations. The same is true for address fields.
For example, if the memory size is 4 K (i.e., 212 = 4, 096) words, then the
number of bits required to specify an address is 12 bits.

Obviously, there is a limit on the number of opcode bits and addresses
an instruction format of either 16 or 32 bits can support. For example,
with an 1-address instruction format of 16 bits, if the address field directly
references or points to a memory location and the opcode field is 4 bits,
the instruction format can only support one address with a memory size of
212 = 4, 096 words and 16 different operations. Even allocating one more
bit to the opcode field to support 32 operations reduces the addressable
memory size down to 2 K (or 211) words. Thus, there is a tradeoff between
the number of operations supported and the size of memory for a given
instruction format.

Instruction formats that support either a 2-address or a 3-address format
get around this limitation by employing a register file. The size of the register
file is typically 16 or 32 entries, which significantly reduces the number of
bits for the address fields. For example, a 16-bit instruction format with a
register file containing 16 entries and opcode field size of 4 bits can support
up to 3 addresses. Even with a 32-entry register file, up to two addresses
can be supported with a couple of bits to spare. For a 32-bit instruction
format, there is ample room to support up to three addresses with room to
spare for other encoding possibilities.

A typical ISA supports well over one hundred different instructions. This
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Opcode Address

3 bits 13 bits

Figure 2.6: Instruction format of the pseudo-ISA.

will require 6 or more bits for the opcode field, which cannot be supported
by static encoding schemes discussed above. Thus, a technique called op-
code extension is used to expand the encoding space within the instruction
format. The basic idea is to have one (or a number of) opcode pattern(s) to
indicate to the processor’s decoder that other bits in the instruction format
are used to encode additional instructions. Therefore, the size the opcode
field and the location of its bits within the instruction format vary depend-
ing on the type of instructions. We will see an example of this when the
ISA of the AVR processor is discussed in detail in Chapter 4.

2.5 A pseudo-ISA

In order to put together the concepts discussed in this Chapter, this section
discusses a design of a simple, pseudo-ISA. The instruction format for the
pseudo-ISA is shown in Figure 2.6, which is an 1-address instruction format
containing an opcode field and an address field. For the sake of discussion,
let us assume the instruction format is 16 bits wide. Our pseudo-ISA will
provide only eight instructions, and thus, the number of bits in the opcode
field is 3 bits (i.e., 23 = 8). The rest of the 13 bits is allocated for the
address field, which allows up to 213 = 8, 192 or 8 K memory locations to
be directly addressed. Since the instruction format is 16 bits, each memory
location and the accumulator (AC) are also 16 bits.

Our pseudo-ISA supports the following set of instructions:

• Data Transfer Instructions
– LDA (Load Accumulator): Loads a memory word to the AC.
∗ Usage: LDA x ; x is a memory location

– STA (Store Accumulator): Stores the content of the AC to mem-
ory.
∗ Usage: STA x ; x is a memory location

• Arithmetic and Logical Instructions
– ADD (Add to Accumulator): Adds the content of the memory word
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specified by the effective address to the content in the AC.
∗ Usage: ADD x ; x points to a memory location

– SUB (Subtract from accumulator): Subtracts the content of the
memory word specified by the effective address from the content
in the AC.
∗ Usage: SUB x ; x points to a memory location

– NAND (logical NAND with accumulator): Performs logical NAND
between the contents of the memory word specified by the effec-
tive address and the AC.
∗ Usage: NAND x ; x points to a memory location

– SHFT (Shift): The content of AC is shifted left by one bit. The
bit shifted in is 0.
∗ Usage: SHFT ; The content of AC is shifted left by one bit

• Control Transfer
– J (Jump): Transfers the program control to the instruction spec-

ified by the target address.
∗ Usage: J x ; jump to instruction in memory location x

– Bcc (Branch Conditionally): Transfers the program control to the
instruction specified by the target address based on condition cc.
∗ Usage: BNZ x ; jump to instruction in memory location x if

content of AC is not zero

Despite the fact that there are only eight instructions, our pseudo-ISA
is functionally complete. The pair of data transfer instructions LDA and
STA allow operands or data to be transferred between the memory and AC.
The combination of ALU instructions ADD, SUB, NAND, and SHFT allows for
coding of any arbitrary arithmetic and logic functions. For example, a mul-
tiply operation can be performed by successive add and shift operations
(see Chapter 9.5). In terms of logic operations, NAND is functionally com-
plete, and thus, any logic operation can be perform using NAND. J and BNZ

instructions allow for control transfer.

You may have noticed that I/O instructions are conspicuously absent.
It would have been ideal to add a pair of IN (Input) and OUT (Output)
instructions for I/O operations. However, since the 3-bit opcode field does
not allow room for any more instructions, we instead opt for using LDA

and STA instructions to perform memory-mapped I/O operations. The basic
idea of memory-mapped I/O is to use the same address bus to address
both memory and I/O devices, instead of having a separate, dedicated port
for I/O. This is in contrast to port-mapped I/O , where a special class of
instructions, such as IN and OUT, are used to perform I/O operations, e.g.,
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;

; Equivalent assembly program

;

.ORG 0 ; Program starts at location 0

LDA A ; Load operand A to AC

SHFT ; Multiply A by 2

SHFT ; Multiply 2*A by 2

ADD B ; Add operand B to AC and store result back in AC

STA C ; Store result in AC to location C

Loop: J Loop ; Loop forever

A: .DEC 83 ; Decimal operand A

B: .DEC -23 ; Decimal operand B

C: .DEC 0 ; Initial value of location C

.END ; End of symbolic program

Figure 2.7: An equivalent assembly program for code C = 4*A + B;.

AVR processors.

Now that we have discussed the operations of the eight instructions,
let us write a small assembly program using our pseudo-ISA. The following
example C program multiplies the variable A by 4 and adds it to the variable
B and assigns the result to the variable C.

/* A simple C program */

main()

{ int A = 83, B = -23, C = 0;

C = 4*A + B;

}

The equivalent assembly program for the above C code is shown in Fig-
ure 2.7, which consists of mnemonics, a data section, and assembly direc-
tives. Mnemonics represent the symbolic code for the assembly program
and consist of LDA, STA, ADD, SUB, NAND, SHFT, J, and BNZ instructions. The
data section defines data values in memory and consists of the three .DEC

assembly directives. Assembly directives are special instructions that are ex-
ecuted by the assembler at assembly time, not by the program at run-time.
There are several types of assembly directives in the assembly program. For
example, the assembly program starts with a .ORG directive and ends with a
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Memory
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Code
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Figure 2.8: Assembly code and data in memory.

.END directive. The .ORG directive defines the starting location of the code
and data section in memory. Thus, .ORG 0 indicates the first instruction
in the code, i.e., LDA A, will be located at memory location 0. The .END

directive indicates the end of the program.

The C statement C = 4*A + B; is implemented by the sequence of as-
sembly instructions LDA, SHFT, ADD, and STA. The LDA A instruction loads
the variable A from memory to AC. The two SHFT instructions multiply the
variable A by 4. The ADD B instruction adds the variable B to the content of
AC (i.e., A) and stores the result back into AC. Finally, the STA C instruction
stores the result of the add operation to variable C in memory.

At this point, there may be some confusion about what is meant by ‘a
variable in memory?’. Figure 2.8 shows what the assembly code and data
look like in memory. Variables A, B, and C were declared in the C program
by the statement int A = 83, B = -23, C = 0;, which states that these
are of type integer (16 bits) and variables A and B are initialized to 83 and
-23. This allows the complier to appropriately allocate memory locations
and assign decimal values. This is achieved in assembly language by using
a special directive. In the example assembly program, the .DEC directive
allocates a memory location pointed to by a label and stores the initialized
value. For example, the line A: .DEC 83 states that the memory location
labeled A is initialized with a decimal value 83. The label A can be anything
as long as the assembly programer or the compiler writer is aware of the
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fact that the label A in the assembly program is referring to the variable A

in the C program.
You may have noticed that the last instruction in the code (i.e., J Loop)

is an unconditional branch to itself resulting in an infinite loop. You may
wonder why we would write a program with an infinite loop instead of
having a special instruction that would halt the program. The answer to
this question is that processors are always executing instructions and do not
stay idle. Moreover, they can be ‘woken up’ by external events through the
interrupt handling facility (See Chapter 5). For example, a word processor
program is always executing some instructions in the background even when
you don’t type any words. However, as soon as you type a character, it
interrupts the processor and the program comes out of its dormant state.
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3.1 Introduction

Computer organization or computer architecture1 defines how the various
digital components are organized, interconnected, and inter-operate in or-
der to implement a computer system. Computer architecture design consists
of the following four aspects: instruction set architecture, microarchitecture,
system design, and hardware design. The concept of Instruction Set Archi-
tecture (ISA) has already been discussed in Chapter 2. Microarchitecture is
a lower level, more concrete and detailed, description of how the constituent
parts of the processor are interconnected and how they interoperate in or-
der to implement an ISA. System design involves how the processor and
other peripheral components, such as memory, display, storage devices, etc.,
within a computer system come together. Hardware design represents the
low-level implementation involving logic- and circuit-level implementation

1These terms will be used interchangeably throughout the book.
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Figure 3.1: Computer Organization.

of the major components in a computer system. This is done through Hard-
ware Description Languages (HDLs), integrated circuit design, and Printed
Circuit Board (PCB) design.

The purpose of this chapter is to introduce fundamental concepts in
computer organization. We will first discuss the organization of a typical
computer system and its components. We will then discuss microarchitec-
ture design by implementing a simple processor capable of executing the
instructions in the pseudo-ISA discussed in Chapter 2. The concepts dis-
cussed here are meant to provide a basis for more detailed discussions of
assembly language programming and microarchitecture design for the AVR
processor in Chapters 4 and 8, respectively. Along the way, we will also
include some discussions on digital design to gain a better understanding
of how various components are implemented and interfaced. A more de-
tailed discussion on the design of major components in a computer system
will be provided in Chapter 7. I/O operations will be treated separately in
Chapter 5.

Figure 3.1 shows a typical computer system, which consists of proces-
sor or Central Processing Unit (CPU), memory, and Input/Output (I/O).
All computer systems, whether they are general-purpose computers, such as
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desktops and laptops, or embedded systems, such as media players, motor
controllers, sensors, etc., are basically designed this way. The memory holds
instructions and data. I/O is used to communicate with the outside world
(e.g., sensors, motors, network interfaces, printer, disk, display, mouse, etc.).
The CPU contains the datapath and the Control Unit. The datapath is a
collection of functional blocks or components, such as registers, buses, arith-
metic logic units (ALUs), etc., that performs data processing operations.
The control unit is responsible for managing the flow of information among
various components within the datapath as well as between datapath and
memory or I/O by providing control signals to these various components.

3.2 Memory

The term memory can have a number of different meanings. A memory
is either connected externally to a CPU or integrated into the CPU chip.
Memory is also referred to as Random Access Memory (RAM), which allows
instructions or data to be accessed in any order, and any piece of information
is returned in a constant amount of time regardless of its physical location
in memory. This is in contrast to magnetic or optical disks where access
time of a data depends on its location on the disk (i.e., track and sector).

A memory can be organized as either separate instruction and data mem-
ories, or unified to hold both. It is organized into consecutive addressable
memory words, where a memory word can have different meanings. For ex-
ample, a memory word can mean the size of the information accessed by the
CPU (i.e., CPU register size). For example, many high-end embedded pro-
cessors have 32-bit memory words, which accommodate both instructions
and data that are 32 bits long. In contrast, some embedded processors have
different memory word sizes for instructions and data. For example, AVR
microcontroller, which will be discussed in detail in Chapters 4, 5, and 8,
has 16-bit memory word size for instructions, while memory word size for
data is 8 bits.

Memory can also be organized in a hierarchical fashion. For example, a
memory can be augmented by a small, fast cache memory , and there can
be multiple levels of caches, e.g., level-1 (L1), level-2 (L2), and level-3 (L3)
caches. Memory can also be supplemented with larger but slower magnetic
(i.e., hard-disk) and solid-state (i.e., flash drive) storage devices. The num-
ber of levels and the complexity of the memory hierarchy depends on the
computer system and its applications. For example, personal computers
(PCs) have memory hierarchy consisting of all of the levels discussed thus
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far. In contrast, simple microcontrollers for embedded systems may only
have one or two levels of memory hierarchy (e.g., register file and memory).

3.3 Microoperations

A CPU executes an assembly instruction by performing a sequence of micro-
operations. A micro-operation is a basic operation performed on information
(instruction and data) stored in registers or in memory in a single clock cycle,
or tick. Each micro-operation consists of one or more register transfer opera-
tions. As the name suggest, a register transfer operation involves moving or
copying the content of one register to another. The source and destination
registers can be directly connected, share the same bus, or have some com-
binational logic, such as ALU or multiplexers, in between them. Therefore,
specifying what needs to be done by the CPU in a micro-operation basically
involves defining register transfer operation(s) that needs to be performed in
one clock cycle. For this reason, the sequence of micro-operations required
to implement an assembly instruction greatly depends on the microarchitec-
ture.

Since there must be no ambiguity in defining the sequence of micro-
operations, Register Transfer Language (RTL) description is used to repre-
sent registers and specify the operations on their contents. RTL uses a set
of expressions and statements that resemble statements used in Hardware
Description Language (HDL) and programming languages. This notation
allows for clear and concise specifications of part or all of a complex digital
system, such as a processor.

The most fundamental register transfer operation is moving the content
of one register to another register. This is represented using the replacement
operator (←). For example, the statement

R1← R2

denotes that the content of register R2 is transferred to register R1. Thus,
R1 represents the destination register and R2 represents the source regis-
ter. Note that this is a copy operation, and thus the content of R2 is not
destroyed.

Figure 3.2 illustrates the basic register transfer operation. There are sev-
eral important assumptions being implied with the RTL description. First,
all the registers involved in the register transfer are clocked, which allows
multiple register transfers to occur simultaneously and synchronously. Sec-
ond, the number of bits in both registers are equal and thus the number of
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Figure 3.2: Simple register transfer between two n-bit registers.
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Figure 3.3: n-bit register transfer between two different sized registers.

bits being transferred does not have to be explicitly specified. Third, all n
bits are transferred in parallel. Lastly, the order of the bits being transferred
is preserved, i.e., ith-bit of R2 is transferred to ith-bit of R1.

A data being transferred can be specified in a number of ways. Instead of
transferring all the bits of a register, a subgroup of bits and even individual
bits can be specified using parenthesis. This type of operation is required
when the size of R2 is different from R1. For example, the following state-
ment indicates the transfer of bits n − 1 through 0 of R2 to R1, which is
illustrated in Figure 3.3:

R1← R2(n− 1...0)

Note that the size of R1 is equal to the size of data being transferred.
A register can also be segmented into two halves and defined as low (L)

and high (H) parts. The following statement specifies the transfer of the
upper-half of R2 to the lower-half of R1, which is illustrated in Figure 3.4:

R1(L)← R2(H)
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Figure 3.4: Register transfer of upper-half of R2 to lower-half of R1.

The content of a register can be subdivided into fields, each containing
a specified number of bits. The following two unrelated statements specify
transfers of the field1 portion or the field2 portion of R2 to R1.

R1← R2(field1)

or

R1← R2(field2)

Note that the number of bits for field1 or field2 is implied based on the size
of its respective field, and it has to be equal to the size of R1.

Register transfers can also be performed simultaneously, which are in-
dicated by a comma (,). The following statements show three different
examples:

R1← R3(field1), R2← R3(field2)

R1← R2, R2← R3

R1← R2, R2← R1

Figure 3.5 illustrates a simultaneous register transfer of m bits from R3
to R1 and n −m bits from R3 to R2. Again, the sizes of R1 and R2 have
to be equal to m and n−m.

Figure 3.6 illustrates a simultaneous register transfer from R3 to R2 and
R2 to R1. In this example, the output of R2 is available as the input for
R1 and the output of R3 is available as the input for R2. Therefore, when
the three registers are simultaneously clocked, the input to each respective
registers become latched.

Figure 3.7 illustrates another example, where the output of R2 is avail-
able as the input for R1, and at the same time, the output of R1 is available
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Figure 3.5: Simultaneous register transfer of R3 to R2 and R3 to R1.
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Figure 3.6: Simultaneous register transfer of R3 to R2 and R2 to R1.
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Figure 3.7: Simultaneous register transfer of R2 to R1 and R1 to R2.

as the input for R2. Thus, these contents are latched on to the respective
registers at the edge of a clock.

In contrast to registers, a memory contains an array of data. Thus,
square brackets are used to indicate a particular location within memory
(M [ ]). For example, the following statement defines the transfer of a data
in memory pointed to by the address in register R2 to R1:

R1←M [R2]
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Figure 3.8: Conditional register transfer from R2 to R1.

Basic arithmetic, logic, and shift operations are defined using typical
operators found in math and high-level languages. The following statements
show several different examples:

R0← R1 +R2

R0← R1−R2

R0← R1 ∨R2

R0← R1⊕R2

R1← sl R2

The first four operations represent addition (+), subtraction (−), logical OR
(∨), and logical Exclusive-OR (EOR) (⊕). The last operation represents
shift left (sl), which shifts the n bits of R2 to the left by one bit.

There are register transfer operations that occur only when a certain
condition is satisfied, not just every clock cycle. These cases can be rep-
resented by conditional statements. The following statement transfers the
content of R2 to R1 when a condition is satisfied:

if (cond) then R1← R2,

where cond represents the condition to be satisfied, such as equal, not equal,
greater than, less than, etc. Figure 3.8 shows an example of a conditional
register transfer, where the content of R2 is transferred to R1 only when the
Enable signal is ‘1’.
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Figure 3.9: Organization of Pseudo-CPU.

3.4 Organization of the pseudo-CPU

In order to understand what computer organization is, in particular mi-
croarchitecture, we need to consider how the various components (memory,
registers, ALU, busses, and control unit) are “put together”. Fig. 3.9 shows
the organization of the pseudo-CPU , which is a very simple way to connect
these components using a shared Internal Data Bus. Obviously, microarchi-
tectures of commercial processors are much more complex, but nevertheless
the pseudo-CPU shown in Fig. 3.9 is sufficient to implement the instructions
of the pseudo-ISA discussed in Chapter 2 as well as many other assembly
instructions. Moreover, implementing the pseudo-ISA on the pseudo-CPU
provides a good foundation for understanding how more complicated ISAs
and microarchitectures work.

3.4.1 Major components of the pseudo-CPU

The pseudo-CPU consists of a set registers, an ALU, and a Control Unit.
The functionalities of these components are explained in the following:
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Registers

The pseudo-CPU has several important registers to hold information neces-
sary for instruction fetch and execute, which are as follows:

• Program Counter (PC) – holds the address of the next instruction to
be fetched from memory.
• Memory Address Register (MAR) – holds the address of the next

instruction or data to be fetched from memory.
• Memory Data Register (MDR) – holds the information (word), which

can be an instruction, a data, or an address, to be sent to/from mem-
ory.
• Accumulator (AC) – a special register that holds the data to be ma-

nipulated by the ALU.
• Instruction Register (IR) – holds the instruction to be decoded by the

Control Unit (CU).

As can be seen from the figure, the AC register serves as one of the inputs
as well as the output for the ALU, which is consistent with the accumulator-
based architecture of our pseudo-CPU (see Section 2.3.2). The other input
to the ALU can be any of the registers connected to the Internal Data Bus.
The IR register is used to latch the operation code (opcode) of an instruction
or possibly an entire instruction so that the Control Unit (CU) can decode
the opcode and provide an appropriate set of control signals to execute
the instruction. Note that the PC register has a dedicated adder, which
eliminates the need to use the ALU and extra transfers between registers to
increment PC. Finally, the set of MDR and MAR registers allow access to
the memory.

ALU

As the names suggests, ALU is a digital circuit that performs arithmetic
and logic operations. The ALU is one of the most important components
in a CPU since it is involved in practically every instruction execution. For
example, in addition to arithmetic and logic operations, the ALU is also
responsible for calculating effective addresses, branch target addresses, and
any other operations required by instruction execution. We will discuss in
detail the design of an ALU in Chapter 9. For now we will assume the ALU
for the pseudo-CPU can perform any basic arithmetic and logic operations,
and instead discuss how the ALU is connected to the AC and the Internal
Data Bus.

Figure 3.10 shows how the ALU is connected to the AC and the Internal
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Figure 3.10: ALU connection to AC and Internal Data Bus.

Data Bus. The ALU accepts its left operand (A) from the AC and its
right operand (B) from any one of the other registers connected to the
Internal Data Bus. However, as you will see in Section 3.4.4, the right
operand is typically in the MDR. The ALU generates a result and this is
available as an input to the AC, which is then latched at the end of the
clock cycle. This design is consistent with 1-address assembly instructions
that are accumulator-based.

Memory

A memory consists of an array of n-bit words, and is used to hold instructions
and data. A detailed discussion of how memories operate is provided in
Section 7.6. This subsection provides a conceptual view of how memories
operate.

Figure 3.11 shows the memory and its connections for the pseudo-CPU.
A memory has a data bus, an address bus, and a Read/Write control signal.
A data bus is n bits wide and is used to read a memory word from memory
or write a memory word to the memory. The data bus is connected to
the MDR register. An address bus is m bits wide and is used to specify
a particular memory word to be read/written from/to memory. Thus, the
maximum number of n-bit memory words a memory can have is limited
to 2m words. The address bus is connected to the MAR register. Finally,
the Read/Write control signal is a single bit line, where ‘0’ indicates a read
operation and ‘1’ indicates a write operation.
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Figure 3.11: Memory subsystem.

In order to read a memory word from the memory, the address of the
location in memory to be read needs to be latched onto MAR and the
Read/Write control line is set to ‘0’. Then, the memory word pointed to by
MAR is available on the data bus, which is then latched onto MDR. The
write operation involves latching the address of the location to be written to
MAR, latching the memory word to be written onto MDR, and then setting
the Read/Write control signal to ‘1’.

Control Unit

The Control Unit (CU) is responsible for sequencing micro-operations and
providing control signals to the various components to execute assembly
instructions. The sequencing of micro-operations is implemented using a
Finite State Machine (FSM) defined by a set of states and all the possible
transitions between states as well as triggering conditions for each transi-
tion. In addition, a unique set of controls signals are generated for each
state to enable the components necessary to perform a micro-operation. For
example, control signals for the memory and ALU are generated by the CU.
In addition, the control signals that allow the registers to perform register
transfer operations are generated by the CU (see Section 3.4.2).

Control signals can be generated either internally or externally. Internal
control signals are generated within the CPU chip, while external control
signals are generated external to the CPU chip. Examples of internal con-
trol signals are ALU control signals and enable signals for registers (see
Section 3.4.2). An example of an external control signal is the Read/Write
control signal.
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3.4.2 Bus-Register Connections

Before discussing the basic transfers between registers in the pseudo-CPU,
some explanations are needed about how theses registers are connected to
the Internal Data Bus. This is because these registers share the same bus,
and thus additional logic is required to make sure only a pair of registers
(sender/receiver) is communicating at any one time.

Fig. 3.12 shows a more detailed implementation of a single bit of a single-
input, single-output register. For example, such a register would be used by
the PC without the incrementer. An n-bit version would simply have n of
these connected in parallel and controlled by a single common control signal.
As can be seen, a register is clocked (CLK) as well as enabled using an Enable
signal. The CLK signal comes from a global system clock and synchronizes
all of the operations in the processor. On the other hand, Enable signals
are generated by the CU, which depend on the particular instruction being
executed. In order to isolate the output of a register from the Internal Data
Bus, a tri-state buffer is used. Table 3.1 shows the functional requirement
for the tri-state buffer. A tri-state buffer acts as an open-circuit, i.e, high-
impedance (Hi-Z), unless enabled. Thus, whether or not an output of a
register appears on the Internal Data Bus is controlled by the Enable signal.

Table 3.1: Functional Requirement of Tri-State buffer.

Input Enable Output

x 0 Hi-Z
0 1 0
1 1 1
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Figure 3.13: Multi-input, multi-output register connections.

Fig. 3.13 shows examples of multi-input, multi-output register connec-
tions, which are used by AC, PC with the incrementer, MDR, and MAR.
Figure 3.13(a) shows how the MDR is connected to the Internal Data Bus.
In addition to tri-state buffers controlling the output connection to the In-
ternal Data Bus, there is another tri-state buffer that controls the output
connection to the memory. There is also a multiplexer (MUX) that controls
whether the data latched onto MDR is from either Memory or the Internal
Data Bus. Note that both AC and PC connections to the Internal Data Bus
are the same as MDR, except the second set of input/output connections is
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Figure 3.14: Instruction format for the pseudo-CPU.

to the ALU and the incrementer (+1), respectively, instead of memory.

3.4.3 Instruction Format

The instruction format for the pseudo-CPU is shown in Fig. 3.14, which
represents a 1-address instruction format and consists of an operation code
(opcode) field and an address field. The opcode field specifies an operation
to be performed by an instruction, while the address field contains the ad-
dress of the operand, referred to as the effective address (EA). Therefore,
for instructions that require two operands, e.g., x + y, one operand is in
memory pointed to by EA in the address field, the other operand is in the
AC, and the opcode defines the type of operation to be performed on the
two operands. Although we have not discussed the size of the instruction
format, the number of bits in the opcode field defines how many unique
operations can be supported by an ISA2, and the number of bits in the ad-
dress field dictates the size of the memory address space. For example, a
16-bit instruction format with a 4-bit opcode field and a 12-bit address field
supports up to 24 = 16 different instructions and a memory with 212 = 4096
memory words. These issues will be elaborated in the latter part of the
chapter.

3.4.4 Instruction Cycle

An instruction cycle consists of a series of micro-operations required to fetch
and execute one assembly instruction. As discussed in Section 3.3, a micro-
operation represents what a microarchitecture can accomplish in one clock
cycle. The sequence of micro-operations required to fetch an instruction,
referred to as the fetch cycle, is typically identical for all instructions. In
contrast, each instruction execution, referred to the execute cycle, has a
unique sequence of micro-operations. This is because the sequence and
the number of micro-operations required for an instruction depends on its

2ISAs can also use a technique known as opcode extension to increase the number of
supported operations.
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complexity (e.g., add vs. multiply) and hardware availability (e.g., multiplier
vs. no multiplier hardware).

Fetch Cycle

The Fetch Cycle is defined by the following sequence of micro-operations
using RTL description (see Section 3.3):

Cycle 1: MAR ← PC
Cycle 2: MDR ← M[MAR], PC ← PC + 1
Cycle 3: IR ← MDR(opcode), MAR ← MDR(address)

Figure 3.15 illustrates the sequence of micro-operations required for the fetch
cycle.

In Cycle 1, the content of PC is moved to MAR, which allows the address
in MAR to point to the current instruction to be fetched from memory. This
is achieved by having the CU provide (1) PC OUTenable signal to the tri-
state buffer, which causes the content of PC to appear on the Internal Data
Bus, and (2) MARenable signal to MAR. Thus, at the end of the clock
cycle, the content of PC is latched onto MAR. When we say that the CU
generates these signals, we are implying that that these signals are asserted
or enabled, i.e., their values are set to ‘1’. All other control signals not
specified are implied to be disabled, i.e., set to ‘0’. For reading from and
writing to memory, the Read/Write signal is set to ‘0’ for reads and ‘1’ for
writes.

In Cycle 2, M[MAR] refers to the memory location pointed to by the
address in MAR. Therefore, the instruction in M[MAR] is read from memory
and latched onto MDR. The CU provides the Read control signal to memory
and MDRenable signal to MDR. At the same time, PC is incremented and
relatched (via PCenable), which then points to the instruction to be fetched
and executed in the next instruction cycle. These two operations can be
done concurrently because both reading from memory and incrementing PC
do not require the use of the Internal data Bus, and thus do not interfere
with each other.

Although the instruction has been fetched into the processor by the
end of Cycle 2, the processor does not yet know what this instruction is.
Therefore, the opcode portion of the instruction is moved to IR in Cycle
3. In addition, the address portion of the instruction is moved to MAR.
This sets up MAR to point to the operand needed by the instruction in the
Execute Cycle. This is achieved by allowing the content of MDR to appear
on the Internal Data Bus (MDR OUTenable) and enabling the latching of
IR (IRenable) and MAR (MARenable). At this point, you may wonder how
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Figure 3.15: Fetch Cycle (cont.).
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Figure 3.16: Simultaneous latching of IR and MAR.

the different parts of MDR, i.e., opcode and address, are latch onto two
different registers at the same time. The answer is in the way IR and MAR
are connected to the Internal Data Bus. This is illustrated in Figure 3.16,
where the IR and MAR registers are connected to the upper and lower bits
of the Internal data bus, respectively.

Note that not all instructions require an operand (e.g., branch instruc-
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Figure 3.17: Operation of LDA x.

tions). However, performing this operation in the Fetch Cycle saves cycles
in the Execute Cycle.

Execute Cycle

Unlike the Fetch Cycle, the Execute Cycle depends on the fetched instruc-
tion. Thus, the discussion of instruction execution is based on the pseudo-
ISA shown in Table 3.2, which was defined in Chapter 2.5.

Table 3.2: Instructions in the pseudo-ISA.

Category Instruction Description

Data transfer
LDA x Load accumulator
STA x Store accumulator

Arithmetic & logic

ADD x Add to accumulator
SUB x Subtract from accumulator
NAND x Logical NAND to accumulator
SHFT Shift accumulator

Control transfer
J x Jump
BNZ x Branch conditionally

The following shows the sequence of micro-operations required for each
instruction in Table 3.2.

Example 3.1. Execute cycle for LDA x.

Figure 3.17 illustrates the operation of LDA x. The effective address, x,
points to a memory location that contains the operand to be loaded into
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AC. Note that the original content of the AC will be overwritten. The
LDA x instruction can be implemented by the following sequence of micro-
operations:

Execute Cycle:

Cycle 1: MDR ← M[MAR]
Cycle 2: AC ← MDR

Figure 3.18 illustrates the sequence of micro-operations for LDA x. After
the fetch cycle, MAR contains the address of the operand, i.e., the effective
address, to be read from memory. Therefore, in Cycle 1, MDRenable is
asserted and the Read/Write signal is set to ‘0’. This latches the operand in
the memory location pointed to by MAR, i.e., M[MAR], to MDR at the end
of the cycle. In Cycle 2, both MDR OUTenable and ACenable are asserted,
which allows the operand in MDR to appear at the input of AC via the
Internal Data Bus. Thus, the operand is latched onto AC at the end of the
clock cycle.

Example 3.2. Execute cycle for STA x.

Figure 3.19 illustrates the operation of STA x. This instruction is basically
the inverse operation of LDA x, where the operand in the AC is stored to the
memory location pointed to by x. The STA x instruction can be implemented
by the following sequence of micro-operations:

Execute Cycle:

Cycle 1: MDR ← AC
Cycle 2: M[MAR] ← MDR

Fig. 3.20 illustrates the execute cycle for STA x. In Cycle 1, the content of
AC is transferred to MDR. This is achieved by asserting the control signals
AC OUTenable and MDRenable. In Cycle 2, the content of MDR is written
to the memory location pointed to by MAR, which is the effective address
x. In Cycle 2, the operand in MDR is written to memory by setting the
Read/Write signal to ‘1’.

Example 3.3. Execute cycle for ADD x.

Figure 3.21 illustrates the operation of ADD x. The effective address x points
to one of the operands (i.e., Operand2), while the other operand is in AC.
Then, the result of the add operation is stored back in AC. The ADD x in-
struction can be implemented by the following sequence of micro-operations:
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Figure 3.18: Microoperations for LDA x.
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Execute Cycle:

Cycle 1: MDR ← M[MAR]
Cycle 2: AC ← AC + MDR

Fig. 3.22 illustrates the execute cycle for ADD x. In Cycle 1, the operand
in the memory location pointed to by MAR, i.e., M[MAR], is transferred to
MDR. In Cycle 2, the content of MDR is added with the content of AC (i.e.,
Operand1), and the result is latched to the AC.

Example 3.4. Execute cycle for SUB x.

SUB x is similar to ADD x, except that the operation performed is sub-
tract. The effective address x points to the operand that is subtracted
from the operand contained in AC. The result is then stored back in AC.
The SUB x instruction can be implemented by the following sequence of
micro-operations:

Execute Cycle:

Cycle 1: MDR ← M[MAR]
Cycle 2: AC ← AC - MDR

Example 3.5. Execute cycle for NAND x.

NAND x is also similar to ADD x and SUB x, except that the operation per-
formed is bit-wise logical NAND. The NAND x instruction can be imple-
mented by the following sequence of micro-operations:
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Figure 3.20: Microoperations for STA x.
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Execute Cycle:

Cycle 1: MDR ← M[MAR]
Cycle 2: AC ← AC ∧MDR

Example 3.6. Execute cycle for SHFT.

Unlike the three previous instructions, SHFT is a unary operation involving
only the content of the AC. The SHFT instruction can be implemented by
the following micro-operation, where sl means shift left by one bit:

Execute Cycle:

Cycle 1: AC ← sl AC

Note that SHFT can also be described as

Cycle 1: AC(n...1) ← AC(n-1...0), AC(0) ← 0

Example 3.7. Execute cycle for J x.

Figure 3.23 illustrates the operation of J x. The address x represents the
target address for the jump. Thus, the next instruction to be fetched from
memory is contained in the location pointed to by x. The J x instruction
can be implemented by the following micro-operation:

Execute Cycle:

Cycle 1: PC ← MDR(address)

or
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Cycle 1: PC ← MAR

Fig. 3.24 illustrates the execute cycle for J x. The target address x,
which is already in MDR after the fetch cycle, is transferred to the PC. An
alternative is to transfer x from MAR. Either way, the new instruction cycle
starts from the next instruction.

Example 3.8. Execute cycle for BNZ x.

In contrast to J, which is an unconditional branch, BNZ x is a conditional
branch. The ‘NZ’ part of BNZ represents whether the previous arithmetic
instruction (i.e., the instruction just before BNZ) generated a result ‘Not
Equal to Zero’. The BNZ x instruction can be implemented by the following
microoperation:

Execute Cycle:

Cycle 1: If (Z != 1) then PC ← MDR(address)

or

Cycle 1: If (Z != 1) then PC ← MAR

Fig. 3.25 illustrates the execute cycle for BNZ x, which also shows some
additional logic required to test the ‘NE’ condition. Similar to the uncondi-
tional branch instruction J x, x serves as the target address for the branch.
BNZ tests the Z-flag (or Zero-flag), which is one of a number of condition
codes generated by the ALU after every arithmetic operation. The other
condition codes include negative (N), overflow (V), and carry (C) flags (see
Chapter 9). If the Z-flag is not set (i.e., the result is not zero) and the current
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instruction is a branch (i.e., BNZ), which is indicated by the Branch signal
from the CU, the address portion of the instruction x in MDR is transferred
to PC. Alternatively, the target address x can also be transferred from MAR.

3.4.5 Extensions to the pseudo-ISA/CPU

We have discussed thus far how the pseudo-ISA can be implemented on the
pseudo-CPU. The pseudo-CPU, despite its simplicity, is capable of much
more. This subsection will discuss how the pseudo-ISA can be extended to
support additional instructions as well as different addressing modes.

In order to understand the concept of ISA extension, consider the fol-
lowing example where a new instruction is added to the pseudo-ISA to ease
programming and improve performance.

Example 3.9. Suppose we want to implement the instruction“load accu-
mulator indirect”, LDA (x).
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Figure 3.25: Microoperation for BNZ x.

LDA (x) is an example of an instruction that uses indirect addressing mode.
Note that parentheses ‘(’ and ‘)’ distinguish indirect addressing from direct
addressing. As first discussed in Section 2.3.3, addressing modes in assembly
language provide different ways to access operands. We will discuss more
about addressing modes in Chapter 4. But for now, indirect addressing
mode provides a way to indirectly reference a value, which is also referred
to as indirection, and thus allows for implementation of pointers.

Pointers in high-level languages are variables that contain addresses as
their values. For example, consider the following declaration in C/C++:

int main()

{ int x, *xPtr;

x = 33;

xPtr = &x;

}
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Figure 3.26: The concept of a pointer.

The variable x is of type integer, and *xPtr represents a pointer to
type int. The first statement assigns ‘33’ to x. In the second statement,
the address of variable x is assigned to the pointer variable xPtr, where &

represents the address operator. Figure 3.26 shows the relationship between
x and xPtr in memory. As can be seen from the figure, the value 33 is directly
referenced by address x, while xPtr indirectly references the variable x whose
value is 33.

The importance of pointers in programming is that they are stored in
memory, not embedded within instructions, and thus they can be manipu-
lated. For example, consider an array A of n elements, i.e., A[n]. Based on
the above concept of pointers, A[i] is equivalent to *(A+i). Therefore, we
can perform arithmetic operations on any element of array A by indexing
off of the first element of A, i.e., A[0]. This is also the case for accessing
members of a structure. For example, consider an array of elements stored
in memory pointed to by A. This is illustrated in Figure 3.27. Since the
pointer to the first element in array A, i.e., A[0], is in the memory location
pointed to by APtr, we can access any element of the array by adding an
index to A. Moreover, elements of the array can be accessed one by one by
simply incrementing A in a loop. Can you imagine what would happen if
we only had LDA x, or more precisely LDA A? Since A is in encoded within
the instruction, it cannot be manipulated within a loop. Thus, we would
basically have to have separate instructions to access the different elements
of the array as shown below:

LDA A

LDA A+1

...

LDA A+n-1
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Now that we have discussed pointers and indirection, let us resume the
discussion of LDA (x). Figure 3.28 illustrates the operation of LDA (x).
Note that LDAI in the opcode field indicates indirection and distinguishes it
from its direct addressing counterpart. As can be seen from the figure, the
Operand is pointed to by the EA in memory, which is in turn pointed to by
address x in the instruction format. Therefore, the Execute Cycle requires
accessing the memory twice, first for EA and second for the Operand. The
sequence of micro-operations for LDA (x) is shown below.

Execute Cycle:
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Cycle 1:
EA

MDR ← M[
x

MAR] ; Read effective address (EA)

Cycle 2:
EA

MAR ←
EA

MDR ; Move EA to MAR

Cycle 3:
Operand

MDR ← M[
EA

MAR] ; Read operand

Cycle 4:
Operand

AC ←
Operand

MDR ; Move operand to AC

Note that the registers in the micro-operations are marked (in red) to indi-
cate their contents. This makes it easier to keep track of what each micro-
operation accomplishes.

Figure 3.29 illustrates the sequence of micro-operations for LDA (x).
Cycle 1 involves accessing the memory location x (i.e., M[x]) to read in the
EA. EA is then transferred to MAR in Cycle 2 so that it can be used to
read in Operand from memory in Cycle 3. Finally, Operand in MDR is
transferred to AC in Cycle 4.

Example 3.10. Suppose we want to implement the instruction “load accu-
mulator indirect with pre-decrement”, LDA -(x).

The operation of LDA -(x) is illustrated in Figure 3.30. This instruction
is similar to LDA (x), except the content of the memory location pointed
to by x, i.e., EA+1, is decremented and stored back before (referred to as
pre-decrement) Operand is read from memory. Load accumulator indirect
with pre-decrement is another useful addressing mode that can be used, for
example, to access elements of an array one-by-one.

This example illustrates different design choices that can be made and
how they affect the microarchitecture and performance. There are a couple
of ways to include the predecrement capability into the pseudo-CPU shown
in Figure. 3.9. In the first method, a decrementer is integrated into the
MDR, much like the PC. This allows EA+1 to be decremented directly in
MDR and simplifies the overall design. Figure 3.31 shows such a modifica-
tion. Based on this design, the sequence of micro-operations for the Execute
Cycle is shown below.

Execute Cycle:

Cycle 1:
EA+1

MDR ← M[
x

MAR] ; Read EA+1

Cycle 2:
EA

MDR ←
EA+1

MDR - 1 ; Decrement EA+1

Cycle 3: M[
x

MAR] ←
EA

MDR ; Store it back in memory location x (i.e., M[x])

Cycle 4:
EA

MAR ←
EA

MDR ; Move EA to MAR

Cycle 5:
Operand

MDR ← M[
EA

MAR] ; Read operand
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Figure 3.29: LDA indirect.
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Figure 3.29: LDA indirect (cont.).
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Figure 3.31: Pseudo-CPU with decrement capability in MDR.

Cycle 6:
Operand

AC ←
Operand

MDR ; Move operand to AC

As can be seen, Cycles 1 and 4-5 are identical to the LDA (x) instruction.
The only additional micro-operations required are decrementing EA+1 in
Cycle 2 and storing it back into the memory location pointed to by x in
Cycle 3. Note that Cycles 3 and 4 can be done in the same cycle. This
is because moving the content of MDR into MAR occurs at the end of the
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clock cycle and does not affect the content of MAR during writing of MDR
into memory in the same cycle. Based on this, the optimized sequence of
micro-operations for LDA -(x) is shown below:

Execute Cycle (optimized):

Cycle 1:
EA+1

MDR ← M[
x

MAR] ; Read EA+1

Cycle 2:
EA

MDR ←
EA+1

MDR - 1 ; Decrement EA+1

Cycle 3: M[
x

MAR] ←
EA

MDR,
EA

MAR ←
EA

MDR ; Store it back in memory location x
(i.e., M[x]) and move EA to MAR)

Cycle 4:
Operand

MDR ← M[
EA

MAR] ; Read operand

Cycle 5:
Operand

AC ←
Operand

MDR ; Move operand to AC

One of the problems with using a dedicated decrementer as shown in
Figure 3.31 is that it requires another n-bit adder hardware. As will be seen
in Chapter 9, an adder requires a significant amount of logic and may not be
worth the investment in hardware depending on how often the indirect with
pre-decrement addressing mode is used. Therefore, in the second method,
we will use AC and the ALU to perform pre-decrement since ALU already
has this capability.

Based on this design, the sequence of micro-operations for the Execute
Cycle is given below:

Execute Cycle (optimized, no dedicated decrementer):

Cycle 1:
EA+1

MDR ← M[
x

MAR] ; Read EA+1

Cycle 2:
EA+1

AC ←
EA+1

MDR ; Move EA+1 to AC

Cycle 3:
EA

AC ←
EA+1

AC - 1 ; Decrement EA+1

Cycle 4:
EA

MDR ←
EA

AC ; Move EA to MDR

Cycle 5: M[
x

MAR] ←
EA

MDR,
EA

MAR ←
EA

MDR ; Store it back in memory location x
(i.e., M[x]) and move EA to MAR

Cycle 6:
Operand

MDR ← M[
EA

MAR] ; Read operand

Cycle 7:
Operand

AC ←
Operand

MDR ; Move operand to AC

The EA+1 is decremented during Cycles 2-3, and the EA is stored back
into the memory location pointed to by x during Cycles 4-5. As can be
seen, this implementation requires 7 versus 5 cycles for the design with the
dedicated decrementer but less amount of hardware.
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Figure 3.32: Pseudo-CPU with a temporary register.

It is important to note that the original content of AC was destroyed
during Cycle 2, which is not a problem since the AC will be loaded with the
operand. However, in some cases, the original content of AC needs to be
preserved because it contains a valid data for a subsequent instruction, e.g.,
STA. This can be done by having an extra register to temporarily store the
original content of the AC. This is shown in Figure 3.32. The addition of a
TEMP register increases the flexibility for implementing more complicated
instructions, e.g., STA -(x), LDA (x)+, and STA (x)- (see Section ??).
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4.1 Introduction

This chapter presents assembly programming for one of the most widely
used embedded processors, Atmel AVR 8-bit microcontrollers. As discussed
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Figure 4.1: Some AVR-based products.

in Chapter 1.2, a microcontroller is a small computer system optimized
for hardware control that encapsulates the processor core, memory, clock,
timers, and Input/Output (I/O) ports on a single piece of silicon. AVR pro-
vides a family of microcontrollers with different Program and Data Memory
sizes, number of I/O ports, clock speed, and data sizes for a variety of
embedded solutions. The majority of microcontrollers in use today are em-
bedded in other machinery, such as mobile devices, automobiles, telephones,
appliances, and peripherals for computer systems. Such systems are called
embedded systems. Figure 4.1 show some examples of AVR-based products.

Although there are numerous microcontrollers and microprocessors, sev-
eral reasons exist for choosing, in particular, the AVR architecture to in-
troduce assembly language programming in this book. First, unlike micro-
processors in personal computers (PCs), e.g., Intel R© Core

TM
processors, mi-

crocontrollers are designed for small, dedicated applications with low-power
requirements. Microprocessors for PCs tend to receive most of the spotlight;
however, microcontrollers are more prevalent and ubiquitous in our lives.
While some embedded systems are very sophisticated, e.g., smartphones,
many have small memory without operating systems and low software com-
plexity. Typical I/O devices they control include switches, relays, solenoids,
LEDs, small or custom LCD displays, radio frequency devices, and sensors
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for temperature, humidity, light level, etc. Moreover, embedded systems
usually have no keyboard, screen, disk, printer, or other recognizable I/O
devices of a PC, and may lack human interaction devices of any kind. Micro-
controllers are an efficient and economical way to digitally control hardware
devices by reducing size, power, and cost compared to PCs that use a design
consisting of separate high-speed microprocessor, memory, and I/O devices.

Second, one of the most important aspects of assembly programming
is I/O and handling interrupts (see Chapter 5). AVR microcontrollers are
optimized for hardware control in the sense that their Instruction Set Archi-
tecture (ISA) provides a set of instructions and peripheral features to easily
control I/O devices.

Finally, learning assembly language programming is much like learning to
ride a bicycle – once you learn how to program in assembly for one processor,
it is not hard to pick up assembly programming for other processors. The
AVR architecture has a relatively generic ISA, so once you learn how to
program in AVR assembly it is easy to transition to other processors.

4.2 General Characteristics

The AVR family of microcontrollers basically has the same ISA, but the
processors differ in memory size, number of I/O ports, peripheral features,
and clock speed. Our discussion of assembly language programming in this
chapter will be based on a specific AVR processor, the ATmega128 . Fig-
ure 4.2 shows the block diagram of the ATmega128 microcontroller. It
consists of a CPU core, I/O ports, and extensive peripheral features, such
as Timers/Counters, Analog-to-Digital Converter (ADC), Serial Universal
Synchronous/Asynchronous Receiver/Transmitter (USART), etc. The dis-
cussion of I/O and peripherals will be presented in Chapter 5. For now, let
us concentrate on the AVR architecture and assembly programming.

There are several important concepts in assembly programming that
high-level language programmers are not used to. First, you have to know
where the operands or data to be operated on are located in memories and
registers. This is because all instructions involve either registers or a regis-
ter and a memory location. Therefore, knowing what registers are available
and how memory locations are referenced are crucial for learning how to pro-
gram in assembly. Second, each assembly instruction can perform a simple
operation limited by the architecture, whether it be moving data between
memory and registers, an arithmetic operation, or a control transfer. There-
fore, multiple assembly instructions will be required to accomplish the same
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CPU core

I/O ports

I/O ports

Figure 4.2: The block diagram of Atmega128.

functionality of a single expression in a high-level language. This will require
not only writing a correct sequence of assembly instructions to implement
the desired functionality but also knowing where to store intermediate re-
sults in registers or even in memory. Third, flow of control in an assembly
program is determined by the state of the processor in the form of status
or condition flags dictated by the last instruction execution and conditional
branch instructions that may or may not alter the control flow. Therefore,
managing the control flow in an assembly program requires you to be aware
of how instructions change certain status flags and how these flags are tested.
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Figure 4.3: AVR memory organization.

At this point, you may be totally confused and overwhelmed by the
prospect of learning assembly programming. Well, just keep in mind that
assembly programming requires you to do a bit more work and forces you
to be aware of the intricate details of program execution. In the process of
learning assembly programming, you will be exposed to the requirements of
the processor architecture, which is another major focus of this book. So,
let us get started on AVR assembly programming!

4.2.1 Program and Data Memories

The AVR architecture has separate Program and Data Memories, which are
indicated as Program Flash and SRAM, respectively, in Figure 4.2. A more
detailed diagram of the two memories is shown in Figure 4.3.

The size of the Program Memory for ATmega128 is 64K (K=1,024) mem-
ory words, where the size of each memory word is equal to the instruction
format length of 16 bits. Therefore, the Program Memory size is 128 Kbytes,
and thus the reason for ‘128’ after the name ‘ATmega’. Note that most of
AVR instructions are 16 bits; however, there are a few instructions that are
32 bits and thus require two 16-bit memory words. The Program Memory
is implemented using non-volatile flash memory, which retains its contents
even after the power is turned off. This is crucial since, unlike PCs, most em-
bedded systems do not have hard disks and instead the code is programmed
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directly onto the Program Memory once and it is expected to be retained
even after the system is turned off.

The size of Data Memory is 4,352 bytes, which consists of 256 bytes
of General Purpose Registers (GPRs) (see Section 4.2.2) and I/O registers
plus 4 Kbytes of internal Static RAM (SRAM). The Data Memory is also
expandable up to 64 Kbytes using external memory.

4.2.2 Registers

The AVR architecture has the following set of registers:

• 32 8-bit GPRs
• 16-bit X-, Y-, and Z-register
• 16-bit Program Counter (PC)
• 16-bit Stack Pointer (SP)
• 8-bit Status Register (SREG)
• 6 8-bit and one 5-bit I/O registers (ports)

Chapter 5 will provide a detailed discussion of the I/O ports in the AVR
architecture. The discussion that follows covers the purpose of GPRs, PC,
SP, and SREG.

GPRs

Figure 4.4 shows the 32 GPRs, which are located in the first 32 locations of
the Data Memory and serve as a small storage space used by the processor
to quickly access and perform operations on both data and addresses. The
GPRs are referenced in assembly programs as R0 - R31 (or r0 - r31).

As can be seen in Figure 4.2, GPRs are important because all the data
manipulated by the Arithmetic and Logic Unit (ALU) and data transfer op-
erations between memories and I/O ports are done through these registers.
For example, arithmetic instructions, such as ADD (Add two registers) and
SUB (Subtract two registers), require two source registers and one destination
register to be GPRs. As another example, data from an I/O port cannot
be stored directly into the Data Memory. Instead, the I/O instruction IN

(In port) has to first read the I/O data into a GPR and then stored into
the Data Memory using the ST (Store indirect) instruction. This is also the
case in the reverse direction, i.e., from Data Memory to an I/O port.
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Figure 4.4: AVR GPRs.

X-, Y-, and Z-registers

X-, Y-, and Z-registers are address registers used as pointers to the Data
Memory address space. One of these registers, Z-register, can also be used
to access the Program Memory address space. These address registers are
also mapped to the last six GPRs (see Figure 4.4). That is, X-register is
mapped to the register pair R27:R26, Y-register is mapped to the register
pair R29:R28, and Z-register is mapped to the register pair R31:R30. There-
fore, address registers are 16-bit wide allowing access to up to 64 Kbytes of
the Data Memory space.

The use of address registers is an unfamiliar concept for people new
to assembly programming. This is because in high-level languages, such as
C/C++, a data to be operated on is declared as a variable using an identifier
of our choosing. The variable is then virtually referenced using the identifier
without worrying about where it is physically stored in memory because
the compiler hides all the details. Here lies the major difference between
high-level language programming and assembly language programming. In
assembly programming, the programmer has to know where variables and
data structures are stored in memory and thus how to access them. This
is achieved by storing addresses of variables and data structures in X-, Y-,
and Z-registers and using them as pointers.
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Program Counter

Program Counter (PC) is a special register that points to either the current
instruction being executed or the next instruction to be executed depending
on whether or not it has been incremented. PC is 16-bit wide so that all
64K (=216) memory words in the Program Memory can be accessed.

PC indicates where the processor is in the instruction execution sequence
and imposes a strict sequential ordering on the fetch and execution of in-
structions from memory. During the execution of most instructions, PC
is incremented by one, i.e., PC+1, to point to the next instruction in the
control flow. However, the control flow can change due to execution of the
following three types of instructions: Jumps or unconditional branches, con-
ditional branches, and subroutine calls and returns. Jumps and subroutine
calls and returns unconditionally change the PC with target addresses. On
the other hand, conditional branches update the PC only when a specified
condition is met.

Stack Pointer

Stack Pointer (SP) is used to point to the top of the stack. A stack is a
data structure that implements a last-in, first-out (LIFO) behavior. A stack
is used, for instance, to store information about the active subroutines of
a program, i.e., return addresses of subroutine calls and input and output
parameters.

Status Register

Status Register (SREG) contains a collection of condition codes, or flags,
to indicate the current status of the processor. The contents of SREG are
shown in Fig 4.5, where R/W indicates that the bit can be both read and
written and the number in parenthesis indicates the initial value when the
processor is powered on.

I -bit is used to turn on the interrupt facility (see Section 5.3 for a de-
tailed discussion on interrupts). T -bit can be used as either a source or
a destination for a single bit of a register to be operated on, and is useful
for bit manipulation. For example, a bit from a register can be copied to
T-bit using the BST (Bit store from register to T ) instruction, and T-bit
can be copied to a bit in a register by using the BLD (Bit load from T to
Register) instruction. H -bit indicates a carry for Binary Coded Decimal
(BCD) arithmetic. S -bit is an Exclusive-OR between N-bit and V-bit, and
is used for two’s-complement arithmetic. N -bit indicates a negative result
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Figure 4.5: Status Register.

from an arithmetic or logic operation. V -bit indicates an overflow from an
arithmetic operation. Z -bit indicates a zero result from either an arithmetic
or a logic operation. Finally, C -bit indicates a carry from an arithmetic
operation.

These flags are set/reset according to the outcome of an instruction
execution, which can then be followed by a conditional branch instruction.
For example, suppose an instruction, e.g., CP (Compare), causes Z-bit to be
set indicating the result was zero. A subsequent execution of a conditional
branch instruction that tests if Z-bit is set, i.e., BREQ (Branch if equal), will
cause the control flow to be changed to the target address of the branch.
Section 4.4.3 will provide a more detailed discussion on how these condition
codes are used by Control Transfer instructions.

4.3 Addressing Modes

Addressing Modes define the way operands are accessed. Having a variety
of addressing modes gives programmers flexibility to implement pointers to
memory, counters for loop control, and indexing of data.

There are several addressing modes provided in the AVR architecture:

• Register (with one and two registers)
• Direct
• Indirect

– with Displacement
– with Pre-decrement
– with Post-increment

The following subsections discuss these addressing modes.
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Figure 4.6: Register addressing mode.

4.3.1 Register Addressing Mode

Register Addressing mode is used to access data in GPRs. Fig. 4.6 shows two
versions of the Register Addressing mode, where an instruction can specify
either a single register using Rd or two registers using Rd and Rr, where R

means ‘register’ and d and r mean ‘number’. When both Rd and Rr are
used, Rd stands for destination register and Rr stands for source register.

The following shows a couple of AVR assembly instructions that use the
register addressing mode with a single register:

INC Rd

CLR Rd
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The INC (Increment) instruction increments the content of register Rd by
one. The CLR (Clear register) instruction clears the content of register Rd.
Figure 4.6(a) illustrates how a single operand is referenced by the 5-bit
register identifier field d in the instruction format, which allows access to all
32 GPRs.

The following shows an instruction that uses the register addressing
mode with two registers:

ADD Rd, Rr

The ADD instruction adds the contents of Rd and Rr, and stores the result in
Rd, which is consistent with assignment statements in high-level languages.
This example also illustrates the 2-address instruction format used by the
AVR ISA, where both left (d) and right (r) registers serve as input operands
and the result of an operation is stored in the left (d) register. Figure 4.6(b)
illustrates how the two operands are referenced by r and d fields. Again,
both fields are 5 bits allowing all 32 GPRs to be used.

Besides register addressing, the rest of the addressing modes provides
different ways to access data in either Data Memory or Program Memory.

4.3.2 Direct Addressing Mode

Figure 4.7 shows examples of the Direct Addressing mode. Figure 4.7(a)
illustrates an instruction that accesses an 8-bit word in Data Memory. Note
that this is a 32-bit instruction format, which is stored in two consecutive
16-bit words in Program Memory and the second 16-bit word represents the
effective address, or the address of the memory location that contains the
operand. This allows direct access to all 216=64K words in Data Memory.
The following shows example instructions that use the direct addressing
mode:

STS $1000, Rr

LDS Rd, $1000

The STS (Store Direct SRAM ) instruction stores the content of the source
register Rr to the memory location $1000. LDS (Load direct from SRAM ),
which is the inverse of STS, loads the content of memory location pointed
to by $1000 to the destination register Rd.

I/O operations shown in Figure 4.7(b) also use direct addressing. There
are 64 I/O registers mapped to the Data Memory space, and thus 6-bit
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Figure 4.7: Direct addressing modes.

address (A) field is included in the instruction format. The two instructions
that use the I/O Direct Addressing mode are shown below:

IN Rd, $13

OUT $12, Rr

The IN (In port) instruction moves the content of the port register $13,
which is PINC, to the destination register Rd. On the other hand, OUT (Out
port) moves the content of the source register Rr to the port register $12,
which happens to be PORTD. The 64 I/O register address space can also
be directly accessed using LDS and STS. This is done by adding an offset of
32 to the 64 I/O register address. For example, IN Rd, $13 and OUT $12,

Rr are equivalent to LDS Rd, $0033 and STS $0032, Rr, respectively. For
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Figure 4.8: Indirect addressing modes.

the registers in the 160 extended I/O register address space (see Table C.2),
instructions with direct addressing capability, i.e., LDS and STS, will have to
be used.

4.3.3 Indirect Addressing Mode

As illustrated in Figure 4.7(a), direct addressing requires 32-bit instructions
and thus their frequent use increases code size. Indirect Addressing allows
an effective address to be put into an address register X, Y, or Z, and yet
still implement these instructions with the 16-bit instruction format. In
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addition, since the effective address is now in a pair of GPRs, it can easily
be manipulated to provided added flexibility. Figure 4.8 shows examples of
the indirect addressing mode.

The most common way to use indirect addressing is with the following
two instructions illustrated in Fig. 4.8(a):

LD Rd, Y

ST X, Rr

For the LD (Load indirect) instruction, the effective address of the operand
to be loaded into Rd is in one of the X, Y, or, Z-register specified by the
e field of the instruction format. Similarly, ST (Store indirect) stores the
contents of register Rr to the memory location pointed to by the effective
address in one of the X, Y, or Z-register.

A variation of indirect addressing is to allow for displacements. The
following two instructions use indirect addressing with displacement .

LDD Rd, Y+$10

STD Z+$20, Rr

Fig. 4.8(b) illustrates LDD (Load indirect with displacement) and STD (Store
indirect with displacement) instructions. Both of these instructions calculate
the effective address by adding the address in one of the X, Y, or Z-register
with a 6-bit displacement in the q field of the instruction format. These
instructions are useful for accessing data structures. For example, an address
register would act as a base pointer for an array, and then a displacement
would represent an offset to an element of the array.

Another variation of indirect addressing is to have pre-decrement and
post-increment capabilities. This is shown in Figure 4.9. The following two
instructions use Indirect Addressing with Pre-Decrement :

LD Rd, -Y

ST -Y, Rr

The following two instructions use Indirect Addressing with Post-Increment :

LD Rd, Y+

ST Y+, Rr

As the name suggests, pre-decrement decrements an address register and
then it is used to access an operand as shown in Figure 4.9(a). On the
other hand, post-increment uses an address register to access an operand
and then the address register is incremented as shown in Figure 4.9(b).
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Figure 4.9: Indirect addressing with pre-decrement and post-increment.

Pre-decrement and post-increment are useful for accessing array elements
one-by-one (either first to last or last to first) without having to separately
increment/decrement address registers.

4.3.4 Program Memory Addressing Mode

The addressing modes discussed thus far deal with how GPRs and Data
Memory are accessed. There are also addressing modes that dictate how
constants or immediate values are accessed from Program Memory and how
PC is updated to control the program flow.

Fig. 4.10 illustrates Program Memory Constant Addressing . The follow-
ing variations of the LPM (Load program memory) instruction use Program
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Figure 4.10: Program memory constant addressing.

Memory Constant Addressing:

LPM

LPM Rd, Z

LPM Rd, Z+

LPM can be used to access either 8-bit or 16-bit constants stored in the Pro-
gram Memory. 8-bit constants are stored in consecutive 8-bit locations of
the Program Memory and the least significant bit of the Z-register distin-
guishes between the first (left) and second (right) 8-bit constants stored in
one Program Memory word. There are also three variations of LPM. The
first option is simply LPM, where destination and source are implicitly de-
fined as R0 and Z, respectively. The second option is to explicitly define the
destination as well as Z. The final option is to use it with post-increment
capability.

Fig. 4.11 shows variations of Program Memory Addressing , which affect
how target address is generated for jump (JMP and IJMP) and subroutine
call (CALL and ICALL) instructions. Figure 4.11(a) illustrates Direct Pro-
gram Memory Addressing , where the second 16 bits of the 32-bit instruction
represents the target address. In contrast, Figure 4.11(b) shows Indirect
Program Memory Addressing that uses the Z-register to hold the target
address.

Fig. 4.12 shows Relative Program Memory Addressing . This addressing
mode uses an address, which is one more than the PC value for the current
instruction (i.e., PC+1), and adds a signed 12-bit displacement to generate
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Figure 4.11: Program memory addressing modes.

the target address. These types of instructions are also referred to as PC-
relative jumps. The two AVR assembly instructions that use this addressing
mode are RJMP (Relative jump) and RCALL (Relative subroutine call). The
signed 12-bit displacement is represented as a two’s-complement number,
which allows the displacement to be between −211 = −2, 048 and 211 − 1 =
2, 047. There is also a variation of this where a 7-bit displacement is used
instead of 12 bits, which is used by all the conditional branch instructions.
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Figure 4.12: Relative Program Memory constant addressing.

4.4 Instructions

AVR has 134 different instructions. These instructions fall into four cate-
gories; (1) Data Transfer, (2) Arithmetic and Logic, (3) Control Transfer
(branch/jump),(4) Bit and Bit-test, and (5) MCU Control. Appendix A
provides a complete listing of all the AVR instructions. This section dis-
cusses the first four categories of instructions. Note that the coverage of
these instructions is by no means complete, but it should be sufficient for
you to be proficient in writing AVR assembly programs.

Before these instructions are presented, we first discuss the format or
syntax of AVR instructions. Each AVR assembly instruction in a line has
the following syntax:

Syntax:
label: mnemonic operand(s) ; Comment

An instruction consists of mnemonic and operand(s). A mnemonic repre-
sents an operation, and it typically requires one or two operands to form
an instruction (e.g., ADD R0, R1). Also, the AVR assembler accepts both
upper- and lower-case letters (e.g., add r0, r1). Each instruction can also
be assigned an optional label delimited by “:” to indicate to the assembler
that the location of this instruction has a symbolic name. Any text between
“;” and End-Of-Line (EOL) is considered as a comment and is ignored by
the assembler.
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Now that we have discussed the syntax, we are ready to explore the AVR
instructions.

4.4.1 Data Transfer Instructions

The majority of instructions in any assembly program are data transfer
instructions. These instructions essentially move data between GPRs and
memory. Moreover, the location of data to be moved is dictated by the
addressing modes discussed in Section 4.3.

Table 4.1 shows the two instructions that move data between registers:
MOV and MOVW. The MOV instruction transfers data from Rr to Rd, where both
Rr and Rd can be any one of the 32 GPRs. On the other hand, MOVW moves
16-bit data by concatenating Rr+1 and Rr, i.e., Rr+1:Rr, and moving it to
Rd+1 and Rd, i.e., Rd+1:Rd. This instruction is particularly useful for moving
an address pointer from one address register (i.e., X-, Y-, or Z-register) to
another. The following example assembly code moves the content of Y-
register to Z-register

; AVR assembly code - Move Y to Z

MOVW R30, R28 ; Move R29:R28 (Y) to R31:R30 (Z)

Note that these move instructions represent copy operations, thus the con-
tents of Rr and Rr+1 are not destroyed. Also, these instructions are examples
of Register Addressing.

Table 4.1: Move Instructions.

Move Instructions
Instruction Operation Description

MOV Rd, Rr Rd ← Rr Copy register
d = 0, 1, ..., 31
r = 0, 1, ..., 31

MOVW Rd, Rr Rd+1:Rd ← Rr+1:Rr Copy register word
d = 0, 2, ..., 30
r = 0, 2, ..., 30

LD and ST loads and stores 8-bit data from and to Data Memory, respec-
tively. Table 4.2 defines the LD and ST instructions and their variations.

LD and ST instructions use Indirect Addressing mode and the address
registers X, Y, and Z hold the effective addresses. Both the destination reg-
ister Rd for LD and the source register Rr for ST can be any one of the 32
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Table 4.2: Load and Store Instructions

Load and Store Instructions

Instruction Operation Description

LD Rd, src Rd ← M(src) Load indirect (& with pre-
decrement/post-increment)

d = 0, 1, ..., 31
src = X, X+, -X, Y, Y+, -Y, Z, Z+, or -Z

ST dst, Rr M(dst) ← Rr Store indirect

dst = X, X+, -X, Y, Y+, -Y, Z, Z+, or -Z

r = 0, 1, ..., 31

LDD Rd, src Rd ← M(src) Load indirect with displacement

d = 0, 1, ..., 31
src = Y+q or Z+q
q = 6-bit displacement (0≤q≤63) represented in decimal (no prefix), binary
(prefix 0b), octal (prefix 0), or hex (prefix 0x or $)

STD dst, r M(dst) ← Rr Store indirect with displacement

dst = Y+q or Z+q

r = 0, 1, ..., 31
q = 6-bit displacement (0≤q≤63) represented in decimal (no prefix), binary
(prefix 0b), octal (prefix 0), or hex (prefix 0x or $)

LDI Rd, K Rd ← K Load immediate

d = 16, 17, ..., 31
K = 8-bit value (0≤K≤255) represented in decimal (no prefix), binary (pre-
fix 0b), octal (prefix 0), or hex (prefix 0x or $)

LDS Rd, k, Rd ← M(k) Load direct from SRAM

d = 0, 1, ..., 31
k = 16-bit address

STS k, Rr M(k) ← Rr Store direct to SRAM

k = 16-bit address
r = 0, 1, ..., 31

GPRs. Similarly, src for LD and dst for ST can be any one of the address reg-
isters with pre-decrement/post-increment options. As shown in Figure 4.9,
‘−’ sign in front of and ‘+’ signs after the address registers represent pre-
decrement and post-increment operations, respectively. As discussed in Sec-
tion 4.3.3, these two features are very useful for stepping through an array
of elements from beginning to end, and vice versa. This is illustrated in
Figure 4.13. These features are typically used in a loop, and they eliminate
the need to separately increment/decrement pointers.

LDD and STD allow for a displacement off of a base address in an address
register. This type of addressing mode is useful for accessing an element of
a data structure. For example, when a structure is declared in a high-level
language, its members are allocated to consecutive memory locations. Thus,
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Figure 4.13: Post-increment and pre-decrement operations.

the base (i.e., Y- or Z-register) points to the beginning of the structure and
each member can be accessed using a fixed displacement or index off of the
base. The following assembly code example shows how STD can be used to
store a value to an element of a structure.

; AVR assembly code - Store a value to element of structure

; Assume Y points to beginning of a structure

ADD R1, R2 ; Add two values

STD Y+4, R1 ; Store result to location offset by 4 bytes

As another example, Figure 4.14 illustrates how an element of an array
can be accessed using indirect addressing with displacement. The Y-register
serves as the base pointer for the array A, and the ith element of the array
can be accessed by adding i to Y. Note that only Y- or Z-register can be
used as an address register.

LDI allows an immediate (or constant) value to be moved into a register.
Note that the destination register (Rd) for this instruction must be in the
upper 16 GPRs (R16 - R31). The following example assembly code shows
how LDI can be used to add a constant to a register.

; AVR assembly code - Add a constant to a register

LDI R16, 24 ; Load immediate value 24 into R16

Add R1, R16 ; Add it to R1

Note that 24 can be replaced with 0b00011000, $18, or 0x18.
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Figure 4.14: Indirect with displacement.

The LDI instruction is important for another reason. The address regis-
ters X, Y, and Z used by load and store instructions need to be initialized
with pointers to operands. In order to understand the process of loading
pointers to these registers, suppose an operand is in Data Memory loca-
tion $0F10 (i.e., the effective address of the operand is $0F10). Then, the
following assembly code initializes the Y-register to point to the operand.

; AVR assembly code - A code that initializes Y with address $0F10

LDI R29, $0F ; Load $0F to upper byte of Y

LDI R28, $10 ; Load $10 to lower byte of Y

LDI limits the immediate value to be loaded to 8 bits. Therefore, the 16-bit
address is moved in parts to the upper (R29) and the lower (R28) bytes of
Y-register. Afterwards, the Y-register points to the operand, which can then
be loaded from the Data Memory to a GPR using the LD instruction. Note
that the store equivalent of LDI does not exist.

LDS and STS use Direct Addressing to move an 8-bit data between Data
Memory and GPRs. Direct Addressing requires a 16-bit address to be en-
coded in the second half of the instruction format. LDS and STS basically
have the same functionality as LD and ST, respectively, except that LDS and
STS encode the address of the operand, i.e., effective address, directly into
the instruction format, while LD and ST use an address register. This al-
lows LDS and STS to access data from the Data Memory without having
to separately load high and low bytes of the effective address to upper and
lower bytes of an address register. However, these instructions require two
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Program Memory words and the effective address encoded in the instruction
cannot be modified.

Table 4.3 shows the LPM instruction, which is used to access Program
Memory (indicated by MP ) rather than Data Memory. LPM relies on Z-
register as a pointer to the Program Memory and can be combined with the
post-increment capability. This instruction also has a special format where
LPM can be used without dst and src fields.

Table 4.3: Load Program Memory instruction.

Load Program Memory instructions

Instruction Operation Description

LPM Rd, src Rd ← MP (src) Load program memory

d = 0, 1, ..., 31
src =Z or Z+

LPM R0 ← MP (Z) Load program memory

R0 (implied)
Z (implied)

Table 4.4 shows PUSH and POP instructions, which pushes and pops data
on and off the stack, respectively. The discussion on stack operations re-
quires special treatment. A stack is implemented as last-in, first-out (LIFO),
and is one of the most important data structures in computer science and
engineering. For example, many compilers use a stack for parsing the syntax
of expressions, program blocks, etc. before translating it into low-level code.
Stacks are also used to support subroutine calls and returns and parameter
passing. Even calculators that use Reverse Polish Notation (RPN) rely on
a stack.

Table 4.4: Stack manipulate instructions.

Push and Pop Instructions

Instruction Operation Description

PUSH Rr STACK ← Rr Push register on stack

r = 0, 1, ..., 31

POP Rd Rd ← STACK Pop register from stack

d = 0, 1, ..., 31

The following assembly code demonstrates how values 0x32 and 0x24 are
pushed onto the stack:
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SP

Data Memory

TOS

...

RAMEND

(a) Stack initialized.

24
32

SP

Data Memory

TOS

...

RAMEND

(b) After executing the second PUSH

R22.

24
32

SP

Data Memory

TOS
RAMEND

...

(c) After executing POP R22.

Figure 4.15: Push and pop operations.

; AVR assembly code - Push $32 and $24 onto the stack

LDI R22, $32 ; Load $32 into R22

PUSH R22 ; Push $32 on to the stack

LDI R22, $24 ; Load $24 into R22

PUSH R22 ; Push $24 to the stack

...

POP R22 ; Pop TOS (i.e., $24) to R22

Figure 4.15 illustrates the above code. There are a couple of things being
implied with stack manipulations. First, the SP register is assumed to have
been initialized, usually with the address of the end of the Data Memory
indicated as RAMEND. This is shown in Figure 4.15(a). Second, SP is used
to point to the Top Of the Stack (TOS). However, the actual content of
TOS resides in the Data Memory location that is one address higher than
SP. This way, TOS is beyond the range of the Data Memory and thus the
stack is considered empty. Figure 4.15(b) shows the content of the stack
after the second PUSH operation, which indicates $24 is the content of the
TOS. Figure 4.15(c) shows the content of the stack after POP. Note that POP
is a copy operation and thus $32 is not destroyed, but it is irrelevant within
the context of the stack.

The final category of Data Transfer instructions are I/O instructions
that allow data to be read from or written to I/O registers. Table 4.5 shows
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the format of I/O instructions. The IN instruction moves data from one of
the 64 I/O registers to one of the GPRs. The OUT instruction moves data
from one of the GPRs to one of the 64 I/O registers. I/O registers are
located between $0020 and $005F in Data Memory and consist of I/O port
registers, I/O control registers, as well as a number of special registers. I/O
operations will be discussed in detail in Chapter 5.

Table 4.5: I/O instructions.

I/O Instructions

Instruction Operation Description

IN Rd, A Rd ← I/O(A) In port

d = 0, 1, ..., 31
A = 0, 1, ..., 63

OUT A, Rr I/O(A) ← Rd Out port

A = 0, 1, ..., 63
r = 0, 1, ..., 31

4.4.2 Arithmetic and Logic Instructions

Most of the arithmetic and logic instructions operate on two 8-bit operands
and can modify S, V, N, Z, and C condition codes in the SREG (see Fig-
ure 4.5). Table 4.6 shows a breakdown of the most commonly used Arith-
metic and Logic instructions.

Table 4.6: Commonly Used Arithmetic and Logic Instructions.

Description Instructions

Addition ADD, ADC, ADIW

Subtraction SUB, SUBI, SBC, SBCI, SBIW

Logic AND, ANDI, OR, ORI, EOR

Complement COM, NEG

Register Bit Manipulation SBR, CBR

Register Manipulation INC, DEC, TST, CLR, SER

Multiplication MUL, MULS, MULSU

The format for arithmetic and logic instructions is shown in Table 4.7.
Instructions ADD, ADC, SUB, SBC, AND, OR, and their immediate versions SUBI,
ANDI, ORI, are relatively straightforward.

The following example assembly code shows how a constant can be added
to a register:
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Table 4.7: Arithmetic and Logic Instructions.

Arithmetic and Logic Instructions

Instruction Operation Description

Two registers

ADD Rd, Rr Rd ← Rd + Rr Add two registers
ADDC Rd, Rr Rd ← Rd + Rr + C Add with carry two registers
SUB Rd, Rr Rd ← Rd − Rr Subtract two registers
SBC Rd, Rr Rd ← Rd − Rr − C Subtract with carry two registers
AND Rd, Rr Rd ← Rd ∧ Rr Logical AND registers
OR Rd, Rr Rd ← Rd ∨ Rr Logical OR registers
EOR Rd, Rr Rd ← Rd ⊕ Rr Exclusive OR registers

d = 0, 1, ..., 31
r = 0, 1, ..., 31

Register and Immediate Value

SUBI Rd, K Rd ← Rd − K Subtract constant from register
ANDI Rd, K Rd ← Rd ∧ K Logical AND register and constant
ORI Rd, K Rd ← Rd ∨ K Logical OR register and constant

d = 16, 17, ..., 31
K = 8-bit value (0≤K≤255) represented in decimal (no prefix), binary (pre-
fix 0b), octal (prefix 0), or hex (prefix 0x or $)

; AVR assembly code - Add a constant to a register

LDI R16, 24 ; Load immediate value 24 into R16

ADD R1, R16 ; Add it to R1

Here is another example assembly code that uses the ADC instruction to
add an 8-bit value to the 16-bit X-register.

; AVR assembly code - Add a constant to X-register

LDI R16, 0 ; Zero R16

LDI R17, 0X18

ADD R26, R17 ; Add 24 to low byte of X-register

ADC R27, R16 ; Add carry (if set) to R27

Note that in this code, the decimal value 24 was represented as hexadecimal
value $18.

The following assembly code shows an example of a logical AND opera-
tion:

; AVR assembly code - AND R1 and R2

LDI R16, 0b00001111 ; Load 15 into R16

LDI R17, 0b00001010 ; Load 10 into R17

AND R17, R16 ; AND 15 and 10, result => R17=10
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In the above example, 15 and 10 are represented as binary numbers 00001111
and 00001010, respectively, using the prefix 0b. Performing a logical AND
operation on these two binary values results in 00001010, and this is stored
in R17.

Unlike arithmetic and logic instructions that operate on 8-bit data, ADIW
and SBIW instructions operate on 16-bit data. The format of these two
instructions is shown in Table 4.8. These instructions add and subtract an
8-bit value to and from a 16-bit address register, i.e., X-, Y-, or Z-register.
This allows an entire address register to be updated with an arbitrary value
and simplifies manipulation of pointers. The following example assembly
code increments X-register by 4.

; AVR assembly code - Increment X by 4

ADIW R26, 4 ; Add 4 to R27:R26 (X)

Without this instruction, the constant would first have to be added to the
lower byte of X-register, and then the upper byte of X-register would have
to be updated using ADC.

Table 4.8: Add/Subtract Immediate to/from word.

Add/Subtract Immediate to/from Word Instructions

Instruction Operation Description

ADIW Rd+1:Rd, K Rd+1:Rd ← Rd+1:Rd + K Add immediate to word
SBIW Rd+1:Rd, K Rd+1:Rd ← Rd+1:Rd − K Subtract immediate from word

d = 26, 28, 30
K = 6-bit value (0≤K≤63) represented in decimal (no prefix), binary (prefix
0b), octal (prefix 0), or hex (prefix 0x or $)

COM and NEG instructions are used to perform one’s-complement and
two’s-complement operations, respectively. The formats for these two in-
structions are shown in Table 4.9. The assembly code shown below negates
the value 33 by taking the two’s-complement of it:

Table 4.9: Complement and Negate Instructions.

Complement and Negate Instructions

Instruction Operation Description

COM Rd Rd ← $FF − Rd One’s complement
NEG Rd Rd ← $00 − Rd Two’s complement

Rd = 0, 1, ..., 31
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; AVR assembly code - Negate 33

LDI R16, 33 ; 33 = 0b00100001

COM R16 ; 0b11011110

INC ; 0b11011111

This code takes 33, which is 0b00100001, and first performs one’s-complement
to generate 0b11011110. This is then incremented by 1 to generate 0b11011111.
In order to verify that 0b1101111 is indeed -33, we take the two’s-complement
which results in 0b00100001. Of course, we could have also used the follow-
ing code:

; AVR assembly code - Negate 33, simpler way

LDI R16, 33 ; 33 = 0b00100001

NEG R16 ; 0b11011111

SBR and CBR instructions set and clear bits in a register, respectively.
The formats for these two instructions are shown in Table 4.10. SBR sets the
bits in a register by performing a logical OR with an 8-bit constant K. On
the other hand, CBR clears the bits in a register by taking K and inverting
its bits (i.e., take the one’s-complement) and then performing logical AND
operations. For example, the following instruction can be used to set the
bits 7-4 of a destination register R17:

Table 4.10: Set/Clear Bits in Register Instructions.

Set/Clear Bits in Register Instructions

Instruction Operation Description

SBR Rd, K Rd ← Rd ∨ K Set bit(s) in register
CBR Rd, K Rd ← Rd ∧($FF−K) Clear bit(s) in register

d = 16, 17, ..., 31
K = 8-bit value (0≤K≤255) represented in decimal (no prefix), binary (pre-
fix 0b), octal (prefix 0), or hex (prefix 0x or $)

SBR R17, $F0 ; Set R17 with 0b11110000

Note that SBR is equivalent to LDI. On the other hand, the following CBR
instruction clears the bits that was set by the above SBR:

CBR R17, $F0 ; Clear R17 by ANDing with 0b00001111
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Table 4.11: Unary Instructions.

Unary Instructions

Instruction Operation Description

INC Rd Rd ← Rd + 1 Inrement
DEC Rd Rd ← Rd − 1 Decrement
TST Rd Rd ← Rd ∧ Rd Test for zero or minus
CLR Rd Rd ← Rd ⊕ Rd Clear register
SER Rd Rd ← $FF Set register

d = 0, 1, ..., 31

The reason this works is because one’s-complement of 0b1111000 is 0b0000111,
which is also equivalent to performing $FF−$F0=$0F. When 0b00001111 is
ANDed with 0b11110000, all the bits are cleared.

INC, DEC, TST, CLR, and SER are unary instructions that operate on one
register. Table 4.11 shows the format of these instructions. INC and DEC
are typically used to update loop counters. Based on this update, TST
can be used to determine whether or not a loop should exit. CLR and SER
instructions are used to clear and set a register, respectively. The following
example assembly code shows how some of these instructions can be used
to implement a loop.

; AVR assembly code - A simple loop

LDI R16, 24 ; Load loop count 24 into R26

Loop:

TST R16 ; Test if zero

BREQ Exit ; If zero, exit loop

... ; Do something

DEC R16 ; Decrement loop count

RJMP Loop ; Jump to Loop

Exit:

... ; Continue with program

The above code first loads the loop count to R16. Then, at the beginning of
the loop, a test is made to see if the loop count is zero. As long as the loop
count is not equal to zero, it is decremented and the loop repeats. When
the loop count becomes zero, BREQ is satisfied and the loop exits. Note that
this loop executes 24 times.

The final group of arithmetic and logic instructions are the multiply
instructions. Table 4.12 shows these instructions. The MUL instruction mul-
tiplies two 8-bit operands and generates a 16-bit result, where the upper
and lower bytes of the result are stored in registers R1 and R0, respectively.
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Table 4.12: Multiply Instructions.

Multiply Instructions

Instruction Operation Description

MUL Rd, Rd R1:R0 ← Rd × Rr Multiply unsigned
MULS Rd, Rr R1:R0 ← Rd × Rr Multiply signed
MULSU Rd, Rr R1:R0 ← Rd × Rr Multiply signed with unsigned

d = 0, 1, ..., 31
r = 0, 1, ..., 31

The following assembly code shows an example of multiplying two numbers:

; AVR assembly code - A multiply operation

LDI R16, 32 ; Load 32 into R16

LDI R17, 8 ; Load 8 into R17

MUL R16, R17 ; 32 x 8 = 256

The above code multiplies 32 and 8, which results in 256 or $0100. Thus,
R1 would contain $01 and R0 would contain $00.

MULS and MULSU are signed versions of MUL, where the former assumes
both operands are signed numbers, while the latter assumes only the second
operand (i.e., Rr) is a signed number.

4.4.3 Control Transfer Instructions

Control transfer instructions are used to change the flow of control within
a program. Typically, around 20%∼ 25% of the instructions in a program
are control transfer instructions. A control transfer instruction basically
modifies the PC and redirects where the next instruction will be fetched.
Without these instructions it would not be possible to implement if-else
statements, case statements, and functions in high-level languages. There
are two types of control transfer instructions: conditional and unconditional
branches.

Conditional Branches

A conditional branch will modify the PC if the corresponding condition is
met. In AVR, the condition is determined by condition codes or flags in
SREG (see Figure 4.5). For example, the BREQ (Branch if equal) instruction
will test the Zero (Z) flag of SREG. If Z = 1, the branch is taken; otherwise,
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the branch is not taken. Note that these condition codes are modified based
on the outcome of an instruction before the branch.

There are numerous instructions that can modify the condition flags
in SREG. All arithmetic and logic instructions can affect the SREG bits.
However, the most commonly used instructions to set condition flags are
the compare instructions CP and CPI. These instructions are then immedi-
ately followed by conditional branch instructions that test condition flags to
determine whether or not branches should be taken.

Table 4.13 shows the format and meaning of these instructions. These
compare instructions subtract the two signed values in the corresponding
registers (one register and an immediate value in the case of CPI), and
depending on their outcomes, modify the condition flags. For example, Z-
flag is set to 1 if the compared values are equal; otherwise, Z-flag is set to
0.

Table 4.13: Compare Instructions

Compare Instructions

Instruction Operation Description

CP Rd, Rr Rd - Rr Compare
CPC Rd, Rr Rd - Rr -C Compare with carry
CPI Rd, K Rd - K Compare register with immediate
CPSE Rd, Rr If Rd = Rr then PC

← PC+2 (or 3) else
PC ← PC+1

Compare skip if equal

d = 0, 1, ..., 31 or d = 16, 17, ..., 31 (immediate)
r = 0, 1, ..., 31
K = 8-bit value (0≤K≤255) represented in decimal (no prefix), binary (pre-
fix 0b), octal (prefix 0), or hex (prefix 0x or $)

Flags Affected

if Rd = Rr or K then Z = 1
if Rd 6= Rr or K then Z = 0
if Rd ≥ Rr or K then N = 0, V = 0 or N = 1, V = 1
if Rd < Rr or K then N = 1, V = 0 or N = 0, V = 1

In the cases of comparing whether one value is greater than equal to or
less than the other value, both N and V flags are affected. For example,
if Rd is greater than equal to Rr or K, the result will be positive and thus
N-flag is set to 0. On the other hand, if Rd is less than Rr or K, the result
will be negative and thus N-flag is set to 1. However, if one of the values
is negative, it could generate a result that overflows. For example, suppose
Rd = 126 and Rr = -35. Subtracting the two values results in 161, which
is larger than the maximum value of 127, and causes V-flag to be set to 1
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indicating overflow and N-flag will be set to 1. Similarly, if Rd = -126 and
Rr = 35, subtracting them would generate -161, which is lower than the
minimum value -128, and causes V-flag to be set to 1 and N-flag will be
set to 0. Note that unlike Arithmetic and Logic instructions, these compare
instructions do not update any registers.

The CPC instruction can be used together with CP to compare 16-bit
values in two register pairs. The idea is similar to using ADD and ADC to
add two 16-bit values. The CP instruction is first used to subtract the two
low-byte values. Then, CPC is used to subtract the two high-byte values,
which causes appropriate condition flags to be set.

Unlike the previous three compare instructions, CPSE does not affect
any condition flags. Instead, it conditionally changes the control flow by
incrementing the PC by one (if the next instruction is one word) or two (if
the next instruction is two words).

Once condition flags are updated by a compare instruction, a conditional
branch instruction can be used to test these flags. Table 4.14 shows com-
monly used conditional branch instructions and what condition flags are
evaluated.

Table 4.14: Conditional Branch Instructions

Conditional Branch Instructions

Instruction Operation Description

BREQ label if (Z = 1) then PC ← PC+k+1 Branch if equal
BRNE label f (Z = 0) then PC ← PC+k +1 Branch if not equal
BRGE label if (N⊕V= 0) then PC ← PC+k+1 Branch if greater or equal, signed
BRLT label if (N⊕V= 1) then PC ← PC+k +1 Branch if less than, signed
BRCC label if (C = 0) then PC ← PC+k +1 Branch if carry cleared
BRCS label if (C = 1) then PC ← PC+k +1 Branch if carry set
BRPL label if (N = 0) then PC ← PC+k +1 Branch if plus
BRMI label if (N = 1) then PC ← PC+k +1 Branch if negative
BRVC label if (V = 0) then PC ← PC+k +1 Branch if overflow flag is cleared
BRVS label if (V = 1) then PC ← PC+k +1 Branch if overflow flag is set

label= PC + k + 1
k = 7-bit displacement (-64 ≤ K ≤ 63)

The following example assembly code shows how compare and condi-
tional branch instructions are used to implement control flow:

; AVR assembly code - Equivalent assembly for the IF statement

CP R0, R1 ; Compare R0 with R1

BRGE NEXT ; Jump to NEXT if R0 >= R1

... ; If R0 < R1, do something

NEXT: ... ; Otherwise, continue on
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Table 4.15: Skip Instructions

Skip Instructions

Instruction Operation Description

SBRC Rd, bit if (Rd(bit)=0) PC ← PC+2 or 3 Skip if bit in register is cleared
SBRS Rd, bit if (Rd(bit)=1) PC ← PC+2 or 3 Skip if bit in register is set
SBIC A, bit if (I/O(A, bit)=0) PC ← PC+2 or 3 Skip if bit in I/O register is

cleared
SBIS A, bit if (I/O(A, bit)=1) PC ← PC+2 or 3 Skip if bit in I/O register is set

d = 0, 1, ..., 31
A = 0, 1, ..., 31 (only the lower 32 I/O registers)
bit = 0, 1, ..., 7
PC + 2 or 3 depending whether the next instruction is 16-bit or 32-bit.

This code tests whether R0 is less than R1. If the condition is true, the in-
struction associated with the condition is executed; otherwise, the instruc-
tion is skipped.

Conditional branches also include the skip instructions SBRC, SBRS, SBIC,
and SBIS. Table 4.15 shows the meaning of these instructions. These instruc-
tions will skip the next instruction if the condition is met, and is very useful
in, for example, waiting for some status to be set. The following example
code waits for bit 0 of PINA to be set.

; AVR assembly code - Test and loop on bit 0 on port A

LOOP:

SBIS PINA, 0 ; Skip next instruction if bit 0 on PINA is set

RJMP LOOP ; Jump back if not set

... ; Do something if bit is set

This test is repeated as long as the bit is not set. When the bit is set, it
exists the loop. Note that this code assumes the m128def.inc definition file
is included, which maps PINA to the the location $19 in the I/O register
address space.

Unconditional Branches

Unconditional branches modify the PC without any conditions. These in-
structions are known as jumps because they cause the program to “jump” to
another location in Program Memory. Table 4.16 shows the jump instruc-
tions. Among these, RJMP is the most common because it is implemented
as a PC-relative jump using a 16-bit instruction and does not require a
separate address register or memory word to hold the target address. The
JMP instruction is a 32-bit instruction, where the second 16-bit encodes the



96 CHAPTER 4. AVR: PART 1 - ASSEMBLY PROGRAMMING

Table 4.16: Jump Instructions

Jump Instructions

Instruction Operation Description

RJMP label PC ← PC+k+1 Relative jump
JMP label PC ← k Direct jump
IJMP label PC ← Z Indirect jump to (Z)

label = PC+k+1, k, or Z
k = 12-bit (RJMP) or 16-bit (JMP)

target address. The IZMP instruction is a 16-bit instruction, which requires
a separate instruction to move the target address into the Z register.

There are also special unconditional branch instructions known as sub-
routine calls. These instructions are shown in Table 4.17. Subroutine calls
work just like jump instructions, except they also push the address of the
current instruction plus 1 (i.e., PC+1), referred to as the return address, on
to the stack before making the jump. There is also a corresponding return
instruction (RET), that pops the return address from the stack and loads
it into the PC. The combination of subroutine calls and returns is used to
implement functions in AVR assembly. The following shows an example
skeleton code for subroutine call and return.

; AVR assembly code - Subroutine call and return

...

RCALL SUBR ; First call to SUBR

...

RCALL SUBR ; Second call to SUBR

...

SUBR:

...

...Do something... ; Subroutine

...

RET

In the above code, the subroutine begins with the instruction at label SUBR
and ends with the RET instruction. Moreover, the first RCALL to subroutine
SUBR returns to the instruction right after the first RCALL and the second
RCALL returns to the instruction right after the second RCALL. Thus, a sub-
routine is written once and it can be called multiple times. See Section 4.9.2
for a more detailed discussion on subroutines.



4.4. INSTRUCTIONS 97

Table 4.17: Subroutine Call and Return Instructions

Subroutine Call and Return Instructions

Instruction Operation Description

RCALL label PC ← PC+k+1, STACK ← PC+1 Relative subroutine call
CALL label PC ← k, STACK ← PC+1 Direct subroutine call
ICALL label PC ← Z, STACK ← PC+1 Indirect call to (Z)
RET PC← STACK Subroutine return

label = PC+k+1, k, or Z
k = 12-bit (RCALL) or 16-bit (CALL)

4.4.4 Bit and Bit-test Instructions

Bit and bit-test instructions manipulate or test individual bits within a reg-
ister. There are two types of bit and bit-test instructions; Shift and Rotate
and Bit Manipulation. The following discusses these two types of instruc-
tions.

Shift and Rotate

Shifting a register involves shifting all the bits one position either to the left
or the right. The AVR ISA categorizes register shift operations as shift and
rotate. Table 4.18 defines these instructions.

Table 4.18: Shift and Rotate Instructions

Shift and Rotate Instructions

Instruction Operation Description

LSL Rd Rd(n+1) ← Rd(n), Rd(0) ← 0 Logical shift left
LSR Rd Rd(n-1) ← Rd(n), Rd(7) ← 0 Logical shift right
ROL Rd Rd(0) ← C, Rd(n+1) ← Rd(n), C ← Rd(7) Rotate left through carry
ROR Rd Rd(7) ← C, Rd(n-1) ← Rd(n), C←Rd(0) Rotate right through carry
ASR Rd Rd(n-1) ← Rd(n), n=1, 2, ..., 7 Arithmetic shift right
SWAP Rd Rd(3...0)← Rd(7...4), Rd(7...4)← Rd(3...0) Swap nibbles

n = bit position

The AVR instructions that perform shift left and right are LSL and LSR,
respectively. Figure 4.16 illustrates these operations. LSL shifts in 0 to the
0th bit position and the 7th bit (b7) is shifted out to the C-bit. On the other
hand, LSR shifts in 0 to the 7th bit position and shift out the 0th bit (b0) to
the C-bit.

LSL and LSR instructions are useful for a couple of reasons. First, they
can be used to test each bit in a GPR through the C-bit. Second, they
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b7 b6 b5 b4 b3 b2 b1 b0bC

GPRC

0Before

b6 b5 b4 b3 b2 b1 b0 0b7

GPRC

After

(a) Shift left.

b7 b6 b5 b4 b3 b2 b1 b0 bC

GPR C

0Before

0 b7 b6 b5 b4 b3 b2 b1 b0

GPR C

After

(b) Shift right.

Figure 4.16: Logical shift left and right operations.

b7 b6 b5 b4 b3 b2 b1 b0bC

GPRC

Before

b6 b5 b4 b3 b2 b1 b0 bCb7

GPRC

After

(a) Rotate left.

b7 b6 b5 b4 b3 b2 b1 b0 bC

GPR C

Before

bC b7 b6 b5 b4 b3 b2 b1 b0

GPR C

After

(b) Rotate right.

Figure 4.17: Rotate left and right operations.

can be used to perform multiplication and division by powers of two. For
example, consider the binary representation of 34 shown below. Performing
logical shift left results in 34 × 2= 68, while logical shift right results in 34
÷ 2= 17.

0 0 1 0 0 0 1 0 (34) – Initial value

0 1 0 0 0 1 0 0 (68) – After LSL

0 0 0 1 0 0 0 1 (17) – After LSR

Figure 4.17 illustrates rotate left and right operations. ROL will shift in
bC to the 0th bit and shift out the bit b7 to the C-bit. Rotate right will
shift in bC to the 7th bit and shift out b0 to the C-bit. Therefore, rotate
operations will not lose any bits, while shift operations will loose the bits
that are shifted out.

ASR behaves like LSR except it does not shift in a 0 to bit b7. Instead,
bit b7 will not change to maintain the sign of the number being sifted. ASR

can be used in conjunction with LSR to perform fast multiplication and
division on signed numbers. For example, consider -34 represented in two’s-
complement shown below. As in the case of positive numbers, LSL performs
-34 × 2 = -68. On the other hand, ASR maintains the sign of the number
during shifting and thus performs -34 ÷ 2 = -17.
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b7 b6 b5 b4 b3 b2 b1 b0 bC

GPR C

Before

b7 b7 b6 b5 b4 b3 b2 b1 b0

GPR C

After

Sign

Figure 4.18: Arithmetic shift right.

b7 b6 b5 b4 b3 b2 b1 b0 GPRBefore

b3 b2 b1 b0 b7 b6 b5 b4After GPR

Figure 4.19: Swap nibbles.

1 1 0 1 1 1 1 0 (-34) – Initial value

1 0 1 1 1 1 0 0 (-68) – After LSL

1 1 1 0 1 1 1 1 (-17) – After ASR

The SWAP instruction swaps the upper and lower 4 bits with each other.
This is illustrated in Figure 4.19. This instruction is useful for manipulation
of Binary Coded Decimal (BCD) values.

Bit Manipulation

Bit Manipulation instructions allow individual bits within an I/O register
or SREG to be set or cleared. Table 4.19 shows the most commonly used
Bit Manipulation instructions.

SBI and CBI will set and clear, respectively, any bit in an I/O register.
The following assembly code shows how CBI can be used to clear bit 0 of
PINA after it has been set.

; AVR assembly code - Test and loop on bit 0 of PINA, and clear bit 0 when set

LOOP: SBIS PINA, 0 ; Skip next instruction if bit 0 of PINA is set

RJMP LOOP ; Loop if not set
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Table 4.19: Bit Manipulation Instructions

Bit Manipulate Instructions

Instruction Operation Description

SBI A, bit I/O(A,bit) ← 1 Set bit in I/O register
CBI A, bit I/O(A,bit) ← 0 Clear bit in I/O register
SEf f ← 1 Set condition flag in SREG
CLf f ← 0 Clear condition flag in SREG

A = 0, 1, ..., 31 (only the lower 32 I/O registers)
bit = 0, 1, ..., 7
f = I, T, H, S, V, N, Z, C

CBI PINA, 0 ; Clear bit

... ; Do something if bit was set

SEf and CLf instructions set and clear condition flag f, where f can be
any one of the 8 bits in SREG. The following assembly instruction turns on
the global interrupt facility, i.e., I-bit.

; AVR assembly code - Turn on global interrupt

SEI ; Set I-bit

4.5 Assembly to Machine Instruction Mapping

Up until now, we have discussed assembly programming using mnemon-
ics, or symbolic representation of instructions. Mnemonics make it easier
for programmers to remember names of instructions and registers, as well
as memory locations using labels. These mnemonics are then assembled
into machine instructions consisting of 0’s and 1’s that the processor un-
derstands. Therefore, this section discusses how assembly instructions are
mapped to machine instructions. Understanding this process is important
for a couple reasons. First, when computers were first developed back in
1947, they were programmed using machine instructions (via mechanical
switches) until assemblers and compilers came along! Second, the processor
decodes and executes machine instructions; therefore, understanding how in-
formation from instructions is encoded is crucial for knowing how to design
and develop processor hardware to decode and execute these instructions.

Figure 4.20 shows the machine instruction mapping for the following ADD

instruction:

ADD R15,R16 ; R15 <- R15 + R16
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0000 11rd dddd rrrr 

d dddd = 0 1111 
r rrrr = 1 0000 

Figure 4.20: Machine instruction mapping for ADD R15, R16.

1001 000d dddd 1000 

d dddd = 1 0000 

Figure 4.21: Machine instruction mapping for LD R16, Y.

The bit pattern ‘0000 11’ represents the opcode for the ADD instruction,
and the destination register identifier bits d dddd and the source register
identifier bits r rrrr are located in the instruction format as shown in the
figure. Since the destination and source register identifiers are R15 and R16,
d dddd and r rrrr will be ‘0 1111’ and ‘1 0000’, respectively. Note that
all Arithmetic and Logic instructions that require two registers follow this
convention, and the only thing that will be different is the opcode.

Figure 4.21 shows the machine instruction mapping for the following LD

instruction:

LD R16, Y ; R16 <- M(Y)

The location of the destination register identifier bits d dddd is the same as
the case with two registers, and the rest of the bits represent the opcode for
the LD instruction. Thus, the opcode also implies that the address register
Y is being used. Since the destination register identifier is R16, d dddd will
be ‘1 0000’.

Figure 4.22 shows the machine instruction mapping for the following LDI

instruction:

LDI R30, $F0 ; R30 <- $F0

Again, the location of the destination register identifier dddd is the same as
ADD and LD, but the most significant bit does not exist! The reason for this
is that the instruction format has to also support the two-digit hexadecimal
value $F0. Therefore, the instruction format forgoes the most significant bit
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1110 KKKK dddd KKKK 

1 dddd = 1 1110 
KKKK KKKK = 1111 0000 

Figure 4.22: Machine instruction mapping for LDI R30, $FO.

10q0 qq0d dddd 1qqq 

d dddd = 0 0100 
q qq qqq = 0 00 010 

Figure 4.23: Machine instruction mapping for LDD R4, Y+2.

1011 0AAd dddd AAAA 

d dddd = 1 1001 
AA AAAA = 01 0110 

Figure 4.24: Machine instruction mapping for IN R25, $16.

of the destination register identifier, which is implied as 1 (and thus only
R16 - R31 can be accessed), to accommodate the 8-bit immediate value. The
immediate value is then represented by the constant field KKKK KKKK, which
is ‘1111 0000’.

Figure 4.23 shows the machine instruction mapping for the following LDD

instruction.

LDD R4,Y+2 ; R4 <- M(Y+2)

Again, the location of the destination register identifier d dddd is the same as
LD. The 6-bit displacement field q qq qqq is spread across the instruction
format and can represent any number between 0 and 63. Therefore, the
displacement 2 is encoded as ‘0 00 010’.

Figure 4.24 shows the machine instruction mapping for the following IN

instruction:

IN R25, $16 ; R25 <- M($16+32)
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1111 00kk kkkk k001 

kk kkkk k = 01 0010 1 

Figure 4.25: Machine instruction mapping for BREQ label.

Again, the location of the destination register identifier d dddd is the same as
the other instructions. The bits AA AAAA flank the d dddd field and represent
any I/O register identifier between 0 and 63. Therefore, the I/O register
identifier $16 is encoded as ‘01 0110’. One clarification needs to made with
regards to the instruction description in the comment field. M($16+32)

indicates that the I/O register address is offset by 32. This is because
the I/O register address space starts after the 32 GPRs (see Figure 4.3).
Therefore, even though the programmer can directly reference any one of
the 64 I/O registers, its physical location in Data Memory is offset by 32.

Figure 4.25 shows the machine instruction mapping for the following
BREQ instruction:

BREQ label ; if (Z=1) then PC <- PC + 1 + k

This instruction is a PC-relative branch, thus the target address of the
branch is calculated by adding the difference between the target address
of label and the address of the next instruction (i.e., PC+1) to PC+1.
This way, only the offset has to be stored in the instruction format. This is
illustrated in the following code. The address of the instruction after BREQ

is $0234, while the target address SKIP is $0259. Thus, the offset is $0259-
$0234 = $0025. Then, the six LSBs are stored in kk kkkk k, which is ‘01
0010 1’.

Address Code

... ...

0232 CP R0, R1

0233 BREQ SKIP

0234 ... ; Next instruction

... ...

0259 SKIP:

... ...
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kkkk kkkk kkkk kkkk 

kkkk kkkk kkkk kkkk = 0000 0011 1111 0000 

1001 0100 0000 1110 

Figure 4.26: Machine instruction mapping for CALL label.

Figure 4.26 shows the machine instruction mapping for the following
CALL instruction:

CALL label ; STACK <- PC, PC <- k,

This is a 32-bit instruction and holds the 16-bit target address, i.e., label, in
the second half of the instruction. CALL is one of the few 32-bit instructions
in the AVR Instruction Set Architecture. Note that there are additional k
bits in the first half of the instruction format (which are all 0’s) to allow for
future expansion of the Program Memory.

The CALL instruction has another important functionality; the return
address of the subroutine call is pushed, or saved, on the stack. The following
code illustrates this process:

Address Code

... ...

0230 CALL SUBR ; Subroutine call

0232 ... ; Next instruction

... ...

03F0 SUBR:

... ...

... ...Do something...; Subroutine

... ...

... RET

CALL is used together with RET to implement subroutine calls and re-
turns. Therefore, after the subroutine (SUBR) is executed, RET jumps to the
instruction after the CALL, which is the return address. This requires CALL

to save the return address onto the stack before jumping to the subroutine.
Figure 4.27(a) illustrates the process of saving the return address onto the
stack. In the above code, the return address is $0232, and thus the pro-
cessor automatically pushes the lower and the upper bytes onto the stack.
This way, when RET is executed, the higher and lower bytes of the return
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02 
32 SP 

(initially) 

SP 

After CALL 

PC=03F0 

Low 

High 

(a) Return address pushed onto the
stack.

32 
02 

SP 

After RET 

PC=0232 

(b) Return address is popped from
the stack.

Figure 4.27: Stack manipulation for subroutine call and return.

address will be popped from the stack as shown in Figure 4.27(b) and moved
to PC. Note that the return address still remains in Data Memory but it is
irrelevant with respect to the stack.

4.6 Assembler Directives

Assembler directives are special instructions that are executed before the
code is assembled, and they provide the assembler with information it needs
to know in order to carry out the assembly process, e.g., code location,
constant definitions, storage definitions, etc. These directives are denoted
by a preceding dot ‘.’, e.g., .EQU, and are not assembled into machine in-
structions. Instead, they are used to adjust the location of the program in
memory, define macros, initialize memory, and so on. Table 4.20 provides
an overview of the directives supported by the AVR assembler.

The following subsections discuss the most commonly used directives,
which are .ORG, .DB, .DW, .BYTE, .CSEG, .DSEG, .DEF, .EQU, and .INCLUDE.

4.6.1 .ORG - Set program origin

The .ORG directive sets the location of a code or data to an absolute value
given as a parameter. This allows a code or data to be placed anywhere in
memory. The following shows the syntax of .ORG, where the location of the
instruction following a .ORG directive is defined by its expression:

Syntax:
.ORG expression
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Table 4.20: AVR Assembler Directives.

Directive Description

.BYTE Reserve byte to a variable

.CSEG Code Segment

.DB Define constant byte(s)

.DEF Define a symbolic name on a register

.DEVICE Define which device to assemble for

.DSEG Data Segment

.DW Define constant words

.ENDMACRO End macro

.EQU Set a symbol equal to an expression

.ESEG EEPROM segment

.EXIT Exit from a file

.INCLUDE Read source from another file

.LIST Turn listfile generation on

.LISTMAC Turn macro expression on

.MACRO Begin Macro

.NOLIST Turn listfile generation off

.ORG Set program origin

.SET Set a symbol to an expression

The following example assembly code shows how .ORG can be used to
define the starting address of a code:

; AVR assembly code - Example use of .ORG directive

.ORG $0000 ; RJMP is located in Program Memory $0000

RJMP main ; Jump to the main section of code

.ORG $0042 ; main starts at location $0042

main: MOV R1, R0 ; Do something

In the above code, .ORG $0000 indicates that the RJMP instruction is in the
Program Memory location $0000, and .ORG $00042 indicates that the MOV

instruction is in the Program Memory location $0042, and thus, the label
main is equal to $0042. Note that if .ORG $0000 is omitted, the address of
RJMP defaults to zero.

4.6.2 .DB - Define constant byte(s)

The .DB directive defines 8-bit constants in Program Memory. In order to
refer to the reserved locations, a label should precede the .DB directive. The
syntax for .DB is shown below.
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Syntax:
label: .DB expression list

The .DB directive takes a list of expressions, separated by commas, and must
contain at least one expression. Each expression must evaluate to a number
between -128 and 255 since it is represented by 8 bits.

In order to better understand the use of .DB, consider data structures
in high level languages that are initialized, e.g., an array that is declared
and initialized. The following example assembly code shows the use of .DB
directives to place arrays of constants and characters in Program Memory.

; AVR assembly code - Example use of .DB directive

consts:

.DB 0, 255, 0b01010101, -128, $AA

text: .DB "Hello World!"

In the first array labeled as consts, each of the five constant values occupies
8 bits and can be represented as decimal, binary, octal, or hexadecimal.
In the second array labeled as text, each character within the quotes is
represented as an 8-bit ASCII code.

4.6.3 .DW - Define constant word(s)

The .DW directive is similar to .DB except that it defines 16-bit constants in
Program Memory. The syntax for .DW is shown below.

Syntax:
label: .DW expression list

The .DW directive takes a list of expressions, separated by commas, and must
contain at least one expression. Each expression must evaluate to a number
between -32768 and 65535 since it is represented by 16 bits.

The following example assembly code shows the use of .DW directives to
place arrays of 16-bit constants in Program Memory.
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; AVR assembly code - Example use of .DW directive

varlist:

.DW 0, 0xffff, 0b1001110001010101, -32768, 65535

4.6.4 .BYTE - Reserve byte(s) to a variable

In contrast to .DB, the .BYTE directive reserves memory resources in Data
Memory. In order to refer to the reserved locations, a label should precede
the .BYTE directive. The syntax for .BYTE is shown below.

Syntax:
label: .BYTE expression list

The .BYTE directive takes an expression, which is the number of bytes to
be reserved. The allocated bytes are not initialized and instead they will be
loaded with values and/or values will be read in using I/O operations. The
use of .BYTE is akin to declaring variables and arrays in high-level languages.
The following example assembly code shows the use of .BYTE directives to
allocate the variable Var and the array Array in Data Memory.

; AVR assembly code - Example use of .BYTE directive

Var: .BYTE 1

Array:

.BYTE array_size

The label Var represents the identifier for a variable of one byte and the
array Array consists of array size bytes. Once allocated, they can be
referenced by their labels. We will see how this is done later using HIGH()

and LOW() functions discussed in Section 4.7.3.

4.6.5 .CSEG and .DSEG - Code and Data Segment

The .CSEG and .DSEG directives define the start of a Code Segment and
a Data Segment , respectively. An assembly file can contain multiple Code
Segments and Data Segments. When a program is assembled, the multiple
Code Segments and Data Segments are concatenated into one large Code
Segment and Data Segment and placed in the Program Memory and Data
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Memory, respectively. Therefore, these directives can be used to intermix
code sections and data sections within a program. The syntaxes for .CSEG

and .DSEG are shown below:

Syntax:
.CSEG

Syntax:
.DSEG

The example assembly code below shows how .CSEG and .CSEG directives
are used.

; AVR assembly code - Example use of .CSEG and .DSEG directives

.DSEG ; Start of Data Segment

vartab:

.BYTE 4 ; Reserve 4 bytes in SRAM

.CSEG

const:

.DW 2 ; Write 0x0002 in Program Memory

MOV R1, R0 ; Do something

The above example code uses .DSEG to reserve 4 bytes in the Data Memory
and .CSEG to define a 16-bit constant in the Program Memory. The .ORG

directive can also be used together with .CSEG and .DSEG to place segments
in specific locations of Program Memory and Data Memory, respectively.
Note that the default segment type is Code. Therefore, unless words need
to be reserved in Data Memory .CSEG is not necessary. In the example
above, .DSEG was used to allocate words in Data Memory, and thus, .CSEG
was included to indicate that what follows is code.

4.6.6 .DEF - Set a symbolic name on a register

The .DEF directive associates symbolic names with registers. This allows
programmers to refer to registers with familiar symbolic names rather than
register numbers. The following shows the syntax for .DEF.

Syntax:
.DEF symbol = register
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The following example assembly code shows how registers R16 and R0

can be assigned symbolic names TEMP and IOR, respectively, and used in the
program.

; AVR assembly code - Example use of symbolic names

.DEF TEMP = R16

.DEF IOR = R0

LDI TEMP, $F0 ; Load 0xF0 into TEMP register

IN IOR, $3F ; Read SREG into IOR register

text: EOR TEMP, IOR ; Exclusive-OR TEMP and IOR

.DEF is useful for a couple of other reasons. First, a register can be assigned
several different symbolic names. Second, a symbolic name can be redefined
by simply changing its .DEF definition at the beginning of the program rather
than going through the entire program to change all the register assignments.

4.6.7 .EQU - Set a symbol equal to an expression

The .EQU directive assigns a value to a label. As we saw before, a label is
a symbolic name assigned to an address of an instruction or a constant (or
group of constants) in Program Memory, an address of a memory location
in Data Memory, or any constant. This label can then be used anywhere in
the program. A label assigned to a value by .EQU is a constant and cannot
be changed or redefined. The following shows the syntax of .EQU.

Syntax:
.EQU label = expression

The following example assembly code shows how the symbolic name
IO OFFSET is assigned to the value $23, and then used in an another expres-
sion (PORTA = IO OFFSET + 2) to be used in the body of the code.

; AVR assembly code - Example use of symbolic names

.EQU IO_OFFSET = $23

.EQU PORTA = IO_OFFSET + 2

CLR R2 ; Clear R2

OUT PORTA, R2 ; Write to Port A
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4.6.8 .INCLUDE - Include another file

The .INCLUDE directive tells the assembler to start reading from a specified
file. The assembler then assembles the specified file until the End-Of-File
(EOF) or the .EXIT directive is encountered. An include file may itself
contain .INCLUDE directives. The following shows the syntax for .INCLUDE.

Syntax:
.INCLUDE filename

The following example assembly code shows the use of the iodefs.asm

file.

; AVR assembly code - Example use of .include directive

.INCLUDE "iodefs.asm"; Include I/O definitions

IN R0, SREG ; Read status register

In this code, the IN instruction uses SREG, which is defined in the iodefs.asm
file as

.EQU SREG = $3F ; Status register

Thus, a programmer can use the more familiar symbolic name SREG rather
than the cryptic address $3F.

4.7 Expressions

As we saw in the last few code examples, the AVR assembler supports
expressions. Expressions can consist of operands, operators, and functions.
These are discussed in the following subsections.

4.7.1 Operands

The following operands can be used in an expression:
• Labels that define instruction locations and reserved memory loca-

tions.
• Constants defined by the .EQU directive.
• Integer constants that can be given in different formats, including

– Decimal (default): 10, 255
– Hexadecimal (two notations): 0x0a, $0a, 0xff, $ff
– Binary: 0b00001010, 0b11111111

• PC that defines the current instruction execution.
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4.7.2 Operators

The AVR assembler supports a number of operators shown in Table 4.21.
These operators can be commonly associated with C/C++ operators. Note
that these operations are done only during assmbly and are not used in place
of AVR Instructions.

Table 4.21: Expression Operators.

Symbol Description

! Logical Not

∼ Bitwise Not

- Unary Minus

* Multiplication

/ Division

% Modulo

+ Addition

- Subtraction

<< Shift left

>> Shift right

< Less than

<= Less than or equal

> Greater than

>= Greater than or equal

== Equal

!= Not equal

& Bitwise AND

^ Bitwise XOR

| Bitwise OR

&& Logic AND

|| Logic OR

? Conditional operator

The following example assembly code illustrates the use of a combination
of Shift Left (<<) and Bitwise OR (|) operators:

; AVR assembly code - Example use of operators

.EQU RXEN1 = 4

.EQU TXEN1 = 3

.DEF mpr = R16

...

LDI mpr, (1<<RXEN1|1<<TXEN1)

The LDI instruction takes 1 (i.e., 0b00000001) and shifts it left by 4 bits
and 3 bits, which generate 0b00010000 and 0b00001000, respectively, and
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then performs a logical OR on the two values resulting in 0b00011000. After
preprocessing the expression, the LDI instruction becomes equivalent to

LDI R16, 0b00011000

4.7.3 Functions

Functions can be used to return a particular portion of the result of an
expression. Table 4.22 lists all the functions provided by the AVR assembler.

Table 4.22: Functions.

Function Description

LOW(expression) Returns the low-byte of an expression

HIGH(expression) Returns the high-byte of an expression

BYTE2(expression) Is the same function as HIGH

BYTE3(expression) Returns the third byte of an expression

BYTE4(expression) Returns the fourth byte of an expression

LWRD(expression) Returns bits 0-15 of an expression

HWRD(expression) Returns bits 16-31 of an expression

PAGE(expression) Returns bits 16-21 of an expression

EXP2(expression) Returns 2expression

LOG2(expression) Returns the integer part of log2(expression)

The two most commonly used functions are HIGH() and LOW(). As the
names suggest, HIGH() and LOW() functions extract the high and low byte,
respectively, of an expression. These functions used together are particularly
useful for initializing an address register X, Y, or Z. The following example
assembly code shows how X-register can be set to point to the first element
of array Array.

; AVR assembly code - Pointer initialization

.DSEG

Array:

.BYTE array_size

.CSEG

LDI R27, HIGH(Array) ; Load high byte address of Array to R27

LDI R26, LOW(Array) ; Load low byte address of Array to R26

LD R7, X

As we saw in the previous discussion with the .BYTE directive in Sec-
tion 4.6.4, the label Array is a 16-bit address that points to the the first 8-bit
element in the array. The function HIGH(ARRAY) extracts the upper byte
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of the address and loads it into R27, which is the upper byte of X-register
(see Figure 4.4). This process is repeated with LOW(ARRAY), where the lower
byte of the address is loaded into the lower byte of X-register. Afterwards,
X-register can be used to access any element in the array using indirect,
indirect with displacement, indirect with pre-decrement, and indirect with
post-increment addressing modes (see Table 4.2).

4.8 Assembly Coding Techniques

For many of you, this may be the first time you are writing an assembly
program. This section presents general guidelines to produce well-structured
codes that can be easily understood and debugged. Section 4.8.1 starts with
a discussion on good assembly code structure. This will be followed by
the usefulness of having include files to simplify assembly programming in
Section 4.8.2.

4.8.1 Code Structure

It is important to create and maintain a consistent code structure through-
out a program. Assembly language in general can be very confusing, and
spending several hours trying to find a specific problem area within a piece
of code can become quite frustrating. A well-structured program will reduce
this confusion and make the program much more readable to yourself and
to others.

So what does a well-structured assembly program look like? Structure
includes everything that is typed in the program, i.e., where certain parts of
the program are located, how an instruction looks within a line, etc. There
are several ways to write out a code on ‘paper’, but the most important
part is to be consistent. If you start writing your code in one fashion,
maintain that fashion through out the remainder of the program. Varying
between different ‘styles’ can lead to confusion and make the code difficult
to understand.

The most common style for writing assembly program is to use the four-
column method . This is illustrated in Figure 4.28. If this style is used
consistently throughout the program, the program should consist of four
columns. A column is usually separated with one or two tabs depending on
data string length. The first column contains assembler directives and la-
bels. If a label is longer than one tab length, then the instruction mnemonic
goes on the next line. Some directives, e.g., .include, can span beyond a
single tab. In this case, its parameter definition can be placed in the third
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******************************************************************
;* AVR assembly code - XOR Block of Data
;* This code segment will XOR all the bytes of data between 
;* the two address ranges.
;*****************************************************************

.include "m128def.inc" ; Include definition file

.def tmp = r15 ; temp register

.def xor = r6 ; xor register

.equ addr1 = $1500 ; Beginning address of data

.equ addr2 = $2000 ; Ending address of data

.org $0000 ; Set the program starting address

INIT:
ldi XL, low(addr1) ; Load low byte of start address in X
ldi XH, high(addr1) ; Load high byte of start address in X

FETCH:
ld tmp, X+ ; Load data into tmp
eor xor, tmp ; XOR tmp with xor register
cpi XL, low(addr2) ; Compare high byte of X with end address
brne FETCH ; If low byte is not equal, then get next
cpi XH, high(addr2) ; Compare low byte of X with end Address
brne FETCH ; If high byte is not equal then get next

DONE:
rjmp DONE ; Infinite done loop

Col 1 Col 2 Col 3 Col 4

Tab Tab Tab

Label
Mnemonic

Parameters

Directive Parameter Comment

Parameter

Figure 4.28: Illustration of line formatting rules.

column. The second column contains directive parameters and instruction
mnemonics. The third column contains instruction parameters, and they
start one tab from instruction mnemonics. Finally, the fourth column con-
tains comments. Since it is common for instruction parameters to exceed
one, two, or even three tabs, the comment column can start several tabs
from the parameter column. Although there are no specific guidelines on
how to place comments, aligning them results in more readable code.

The next part to proper code structure is code placement . Certain sec-
tions of code should be placed in certain areas. This alleviates confusion
and allows the contents to be ordered and navigable. By putting forth the
effort and paying attention to code placement, you, and others that read
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Table 4.23: Code Structure.

Header Comments Title, Author, Date, and Description

Definition Includes Specific Device Definition Includes, i.e.
m128def.inc

Register Renaming Register renaming and variable creation,
i.e. .def tmp = r0

Constant Declaration Constant declarations and creation, i.e.
.equ addr = $2000

Interrupt Vectors See Section 5.3.1 Interrupt Vectors

Initialization Code Any initialization code goes here

Main Code The heart of the program.

Subroutines Any subroutine that is created follows the
main code.

ISRs Any Interrupt Subroutines will go here.

Data Any hard coded data is best placed here,
i.e. .DB ‘‘hello"

Additional Code Includes Finally, if there are any additional source
code includes, they will go last.

your code, will appreciate the efficiency with which you are able to locate
and debug problems in your program. Table 4.23 describes the order in
which certain code segments are to be placed.

By following these simple structure rules, the code will be more readable
and understandable.

4.8.2 ATmega128 Definition File

A definition file contains addresses and values for common I/O registers
and special registers within a specific processor. For example, every Atmel
AVR processor contains SREG, but its location in memory may not be the
same across different processors. Thus, a definition file can be used to define
common names for I/O registers, such as SREG and SPH, so that programmers
do not have to memorize or look up each I/O register or processor specific
registers. The definition file for ATmega128 is m128def.inc, which contains
lots of .EQU and a few .DEF directives, as well as other useful information,
such as the last address in Data Memory (RAMEND). See Appendix D for a
complete listing of I/O register and bit definitions.
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4.9 Mapping Between Assembly and High-Level
Language

Now that we have discussed AVR assembly instructions and directives, and
how to write well-structured codes, we are ready to look at more involved
assembly codes. This section presents assembly codes required to implement
typical high-level programming constructs, which include basic expressions,
control-flow , subroutines, functions, and data structures. The following sub-
sections discuss each of these topics, with the exception of basic expressions,
which are incorporated into explanations of other elements of assembly pro-
gramming. Moreover, in order to make it easier for you to transition into
assembly language programming, we will start with C/C++ examples and
then discuss their equivalent assembly codes. This will allow you to see that
assembly programming is not much different than high-level language pro-
gramming. The main exception is that you have to be aware of the processor
architecture and its capabilities, e.g., actual memory locations and how they
are referenced, arithmetic and logic instructions available, memory size, etc.,
and thus a lot more work has to be performed.

4.9.1 Control Flow

Conditional branches and jumps are essential for implementing control-flow
in a program. Therefore, this subsection discusses examples of how C/C++
control-flow expressions are coded in assembly.

IF and IF-ELSE Statements

IF statement is probably the simplest control statement in programming,
and is written as

if (expression)
statement;

If expression is true, then statement is executed; otherwise, statement is
skipped. This can be implemented in assembly as well. For example, con-
sider the following C code.

/* C code - Example IF statement */

if (n >= 3)

{

expr++;
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n = expr;

}

Although there are many ways to write an equivalent assembly code, the
code below shows one possibility:

; AVR assembly code - Equivalent implementation of IF statement

.def n = R16

.def expr = R1

.equ cmp = 3

...

CPI n, cmp ; Compare value

IF: BRGE EXEC ; If n >= 3 then branch to EXEC

RJMP NEXT ; otherwise jump to NEXT

EXEC:

INC expr ; Increment expr

MOV n, expr ; Set n = expr

NEXT: ... ; continue on with code

The CPI n, cmp instruction compares the value in R16 with the immediate
value 3, which then appropriately sets the condition codes depending on the
outcome. The BREQ instruction branches to the label EXEC if R16 is greater
than equal to 3; otherwise, skips to the next instruction (i.e., RJMP NEXT).
Note that we could have also used BRCS instead of BRGE (see Table 4.14).

Although this assembly code behaves like the C code, it is not optimal
in terms of code size and/or execution time. One way to optimize this code
is to simply use BRLT. This is shown below:

; AVR assembly code - Alternative implementation of IF statement

.def n = R16

.def expr = R1

.equ cmp = 3

...

CPI n, cmp ; Compare value

IF: BRLT NEXT ; If n >= 3 is false then branch to EXEC

INC expr ; Increment expr

MOV n, expr ; Set n = expr

NEXT: ... ; Continue on with the code

The above assembly code uses one less line of code, and is also easier to read
and understand. You may wonder how much of a speed improvement is
achieved by removing one instruction. As a stand-alone statement, it may
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not make a much of a difference. However, if the IF statement is nested
in a loop that executes many times, its execution time can be significantly
reduced. Note that we could have also used BRCC instead of BRLT (see
Table 4.14).

IF-ELSE statement is very similar to IF statement, except it has an
additional ELSE part. Consider the following example C code.

/* C code - Example IF-ELSE statement */

if (n == 5)

expr++;

else

n = expr;

The equivalent AVR assembly code is shown below:

; AVR assembly code - Assembly equivalent of IF-ELSE statement

.def n = r16

.def expr = r1

.equ cmp = 5

...

CPI n, cmp ; Compare values

IF: BRNE ELSE ; Goto ELSE since expression is false

INC expr ; Execute the IF statement

RJMP NEXT ; Continue on with code

ELSE: MOV n, expr ; Execute the ELSE statement

NEXT: ... ; Continue on with code

Again, this code uses the complimentary conditional BRNE instead of BREQ,
which makes the code more compact and run faster.

Loops

Loops can be implemented using FOR, WHILE, and DO statements.

The FOR statement is used to execute code iteratively, and is commonly
used to process an array of data. For example, the following code iterates
10 times.

/* C code - FOR loop */

for (n = 0; n < 10; n++)

sum += n;
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The following is the equivalent assembly code:

; AVR assembly code - Assembly equivalent of FOR loop

.def n = r16

.def sum = r3

.equ limit = 10

...

CLR n ; Initialize n to 0

FOR: ADD sum, n ; sum += n

INC n ; increment n

CPI n, limit ; compare n and 10

BRLT FOR ; repeat loop if n does not equal 10

NEXT: ... ; rest of code

This code uses CPI n, limit to check if the end of the loop has been
reached. As long as n is less than 10, the loop continues to iterate.

The WHILE statement is also commonly used to create loops, and has
the form:

while (expression)
statement;

First expression is evaluated, if it is true, then statement is executed, and
control-flow goes back to the beginning of the WHILE loop. The effect of
this is that the body of the WHILE loop, namely the statement, is executed
repeatedly until expr is false. At that point, control is passed to the next
statement. The following C code illustrates this example:

/* C code - WHILE loop */

while (n < 10) {

sum += n;

n++;

}

The equivalent AVR assembly code is shown below:

; AVR assembly code - Assembly equivalent of WHILE loop

.def n = r16

.def sum = r3

.equ limit = 10

...

WHILE:
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CPI n, limit ; Compare n with limit

BRGE NEXT ; If n >= limit, goto NEXT

ADD sum, n ; sum += n

INC n ; n++

RJMP WHILE ; Go back to beginning of WHILE loop

NEXT: ... ; Continue on with code

The DO statement can be considered a variant of the WHILE statement.
Instead of testing at the beginning of the loop, it is performed at the bottom.
The following is an example:

/* C code - DO loop */

do {

sum += n;

n--;

} while (n > 0);

The assembly code for the DO statement is also very similar to the WHILE
statement. This is shown below:

; AVR assembly code - Assembly equivalent of DO loop

.def n = r16

.def sum = r3

...

DO: ADD sum, n ; sum += n

DEC n ; n++

BRNE DO ; since n is unsigned, brne is same expr

NEXT: ... ; Continue on with code

In this code, DEC is executed before the BRNE instruction, and thus the CPI

instruction is not needed.

4.9.2 Subroutine

In assembly programming, a subroutine is a piece of code within a large pro-
gram that performs a specific task. A subroutine can generally be thought
as a “reusable code”, which is any segment of code that can be used over and
over again throughout the program, and allows a programmer to drastically
reduce the size and complexity of a code. In some ways, subroutines are
similar to macros but they are much more flexible and powerful. There are
three major differences between a macro and a subroutine. First, a macro
is supported by the assembler and called by simply using its name, while
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...

...

PC

Program Memory

RCALL subr

...

Main code

1st inst. in subroutine

RET

...

subr

...
...

Return Address

Subroutine code

...

Control-flow

Figure 4.29: Control-flow for subroutine call and return.

a subroutine is called using a subroutine call instruction. Second, only a
single copy of a subroutine code exists, while a macro requires its body to
be substituted into the code each time it is referenced. Thus, very long
macros that are used many times in a program will significantly increase the
code size. Finally, subroutines can be used to pass parameters to implement
function calls as in high-level languages, while macros cannot.

As discussed in Subsection 4.4.3, a subroutine is implemented using the
CALL, RCALL, or ICALL instruction and is paired with the RET instruction to
return the control flow to the address of the instruction after the subrou-
tine call, referred to as the return address. A subroutine is preceded by a
label that signifies its name. Figure 4.29 illustrates the flow of control for
subroutine call and return.

When RCALL is executed, the processor first pushes the return address,
which is PC+1 (since RCALL is a 16-bit instruction) onto the stack. This
is an important concept since it means that the stack must be initialized
before subroutines can be used. The RCALL instruction will then jump to
the address specified by the label subr. The next instruction to be exe-
cuted will be the first instruction in the subroutine. Upon completion of the
subroutine, the RET instruction pops the return address from the stack and
loads it into the PC. Thus, the next instruction to be executed will be the
instruction after the RCALL instruction.

It is important to keep track of what is pushed to or popped from the
stack. If data is not popped correctly within a subroutine, RET can pop the
wrong value as the return address and thus the program will not function
correctly. In addition, a subroutine must not be exited via another jump
instruction other than RET. Doing so will cause the data in the stack to never
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be popped and thus the state of the stack will be incorrect.
As discussed before, the first task before using subroutines is to initialize

the stack. This can be done using the following four lines of code during the
initialization phase of the program:

; AVR assembly code - Stack initialization

.include "m128def.inc"

...

INIT: ldi r16, low(RAMEND) ; Load low byte of RAMEND addr

out SPL, r16 ; Set SP Low register

ldi r16, high(RAMEND) ; Load high byte of RAMEND addr

out SPH, r16 ; Set SP High register

The SP register is set to the last location in the Data Memory indicated by
RAMEND, which is defined in the m128def.inc include file and its value
depends on the Data Memory size of the processor you are working with.
For the ATmega128 processor, RAMEND is $10FF (see Figure 4.3). This is
done by extracting the low and high bytes of the RAMEND address using
the functions low() and high() and moving them to the low and high bytes
of the SP indicated by SPL and SPH, respectively. Note that moving the lower
and higher bytes of the RAMEND address is done using the OUT instruction
because SPL and SPH registers are located in the 64 I/O register space.

4.9.3 Function

Under Construction!!!

4.10 Anatomy of an Assembly Program

Now that we have some basic understanding about how to program in AVR
assembly, this section discusses what an assembly program looks like in
memory.

Consider an example program shown below, which adds eight numbers
stored in Program Memory.

; AVR assembly code - Adding 8 numbers

.include "m128def.inc"

.org $0000

RJMP Init_ptr

.org $000B
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Init_ptr:

LDI ZL, low(Nums<<1) ; Load loop count

LDI ZH, high(Nums<<1) ; Z points to 12

Main: LDI R16, 8 ;

CLR R1 ; Clear accumulator R1:R0

CLR R0 ;

Loop: LPM R2,Z+ ; Load data to R2 and post-inc ptr

ADD R0, R2 ; Add R2 to R0(L)

BRCC Skip ; No carry, skip next step

INC R1 ; Add carry R1(H)

Skip: DEC R16 ; Decrement loop count

BRNE Loop ; If not done loop

Done: JMP Done ; Done. Loop forever.

Nums: .DB 12, 24, 0x3F, 255, 0b00001111, 2, 21, 6

Figure 4.30 shows the layout of the machine code represented in hexadecimal
for the above assembly code in Program Memory. One of the first things
to note is that upper and lower bytes of the 16-bit instruction format are
flipped. That is, unlike how we view the instruction format from MSB to
LSB, or from most significant hexadecimal digit to least significant hexadec-
imal digit, the actual order in Program Memory is reversed. This is because
AVR uses little-endian, where the lower byte of instruction comes first.

The machine code consists of four sections: relative jump instruction,
pointer initialization, main program, and data.

The very first instruction of the machine code is RJMP, which jumps to
label Init ptr upon reset. RJMP is located at address $0000 defined by
the directive .org $0000. The target address of RJMP is Init ptr, which is
located at address $000B. Since RJMP is a PC-relative jump, its displacement
is calculated by subtracting the address of RJMP plus 1 (i.e., $0001) from
the target address, i.e., $000B-$0001=$000A. Then, the first 12 bits (or 3
hexadecimal digits) of the displacement are included in the instruction.

The second section of the code involves pointer initialization (which
starts at address location $000B) to access data contained in the last sec-
tion of the machine code. The eight numbers to be accumulated are stored
starting at the label Nums, which is at Program Memory addresses $0017.
In order to access these locations, Z-register is initialized to point to Nums.
This is achieved using the following two instructions:

LDI ZL, low(Nums<<1) ;

LDI ZH, high(Nums<<1) ; Z points to 12
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! !0000 !0AC0 !!
! !0001 !FFFF!
! !… !…!
! !000A !FFFF !!
! !000B !EEE2 ! !!
! !000C !F0E0!
! !000D !08E0 !!
! !000E !1124!
! !000F !2990 !!
! !0010 !020C !
! !0011 !08F4 !!
! !0012 !1394!
! !0013 !0A95 !!
! !0014 !D1F7!
! !0015 !0C94 !!
! !0016 !1500!
! !0017 !0C18 !!
! !0018 !3FFF!
! !0019 !0F02 !!
! !001A !1506!
! !001E !FFFF!
! !… !… ! !!

 
 

0A 

Nums: .db 12, 24, 0x3F, 255, 0b00001111, 2, 21, 6!

Pointer 
Initialization 

Main  

Data 

rjmp Init_ptr!

1100 0000 0000 1010 

C 0 0 A 

ldi ZL, low(NUMs <<1)!

1110 0010 1110 1110 

E 2 E E 

0000 0000 0001 0101 

940C 0015 
1001 0100 0000 1100 

jmp Done!

Address Machine Code 

Figure 4.30: Contents of the Program Memory for the program that adds 8
numbers.

As discussed in Section 4.7.3, low() returns the low-byte of the address
generated by the expression Nums<<1. The operator << means logical shift
left by one bit. Thus, Nums<<1 takes the address of Nums, which is $0017
(0000 0000 0001 01112), and shifts it left by one bit resulting in $002E (0000
0000 0010 11102). The first LDI instruction moves the low-byte $2E to the
low-byte of the Z-register. The same applies to the second LDI instruction
except the high-byte of the address $00 is loaded into the high-byte of the
Z-register. Thus, after the execution of these two instructions, Z-register is
initialized to point to the first two values, and LSB is used to distinguish the
first (left) byte from the second (right) byte. This is shown in Figure 4.31.

The third section of the code represents the main program, which starts
at location $000D. The LDI instruction initializes the loop count and the
two CLR instructions clear R1 and R0, which serve as the accumulator. The
lpm R2, Z+ instruction is used to load each data element and then post-
increment Z-register to point to the next 8-bit data. The data is then added
to the lower byte of the accumulator (i.e., R0). If there is no carry out,
i.e., no overflow, BRCC skips the next instruction; otherwise, the upper byte
of the accumulator (i.e., R1) is incremented. Afterwards, the loop count is
decremented, and if it is not zero, the program loops back to the label Loop.
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Program Memory 
0 15 7 8 

0 7 8 15 

Z-Register 
0017 
0018 
0019 

12! 24!
0x3F! 255!

0b00001111! 2!

0010111 0 00000000 

Figure 4.31: LPM instruction.

This repeats until the loop count reaches zero. Finally, the program ends
with the 32-bit JMP instruction that loops back to itself. The JMP instruction
uses Direct Program Memory Addressing, and thus, the second 16-bit of the
instruction holds the address of the label Done (i.e., $0015). Note that JMP
has six additional bits for address in the first 16-bit of the instruction. These
bits are zeros, and leave room for possible expansion to the 64K Program
Memory address space.
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5.1 Introduction

Input/Output (I/O) refers to the communication or interface between a pro-
cessor and external devices. High-end microprocessors for laptops, desktops,
and servers support complex but familiar I/O devices, such as keyboard,
mouse, display, printer, network interface, hard disk drive, etc., which in
turn have microcontrollers in them. In contrast, microcontrollers for em-
bedded systems typically have simple I/O interfaces to communicate with
relatively simple devices.
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I/O Ports 
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Figure 5.1: Block Diagram of ATmega128.

Microcontrollers handle different types of I/O depending on the applica-
tion. The simplest form of I/O is to send or receive a signal through one of
the port pins, for example, to turn on an LED (output) or to detect when a
switch (input) has been depressed (discussed in Section 5.2). Other typical
applications involve sensors that monitor some physical conditions, such as
temperature, motion, pressure, light, sound, etc., as input signals, which
can then be received and processed by a microcontroller.

This chapter discusses I/O capabilities of microcontrollers, in particular,
AVR microcontrollers. Figure 5.1 shows a block diagram of the AVR AT-
mega128 microcontroller, which has a set of features to handle a variety of
I/O functionalities. These included ports, timers/counter, analog-to-digital
converter (ADC), Universal Synchronous Asynchronous Receiver/Transmit-
ter (USART), Serial Peripheral Interface (SPI), Two-Wire Interface (TWI),
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Port D
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Port E

Port A
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Port G 2

Port G 1-0

Port G 4-3

Figure 5.2: I/O port pins

and Analog Comparator. In addition, an Interrupt Unit allows these I/O
features to notify the processor that services are needed. The following
Sections discuss each of these I/O features.

5.2 I/O Ports

I/O ports are general-purpose pins on microcontrollers that can be used to
communicate with and control external devices. These pins can be either
input or output and configured by the user at run time.

5.2.1 AVR I/O Ports

I/O ports for the ATmega128 chip are shown in Figure 5.2, which has six
8-bit ports and one 5-bit port for a total of 53 I/O lines. These ports are
referred to as Port A-G. Each port can be used to send/receive 8-bit data
or each I/O line or pin can be configured to send/receive a single bit at a
time.

There are three I/O registers associated with each port: Port x Data
register (PORTx), Port x Input Pins (PINx), and Port x Data Direction
Register (DDRx), where the suffix ‘x’ represents the port name A-G. PORTx
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PORTx7 PORTx6 PORTx5 PORTx4 PORTx3 PORTx2 PORTx1 PORTx0
7 6 5 4 3 2 1 0

PORTx

R/W (0) R/W (0) R/W (0) R/W (0) R/W (0) R/W (0) R/W (0) R/W (0)

PINx7 PINx6 PINx5 PINx4 PINx3 PINx2 PINx1 PINx0
7 6 5 4 3 2 1 0

PINx

R (N/A) R (N/A) R (N/A) R (N/A) R (N/A) R (N/A) R (N/A) R (N/A)

DDx7 DDx6 DDx5 DDx4 DDx3 DDx2 DDx1 DDx0
7 6 5 4 3 2 1 0

DDRx

R/W (0) R/W (0) R/W (0) R/W (0) R/W (0) R/W (0) R/W (0) R/W (0)

DDxn = 0 Input
DDxn = 1 Output

PORTxn = 1 and DDxn = 0 Activates Pull-Up Register

Port x Data Register (PORTx)

Port x Input Pins (PINx)

Port x Data Direction Register (DDRx)

Figure 5.3: PORTx, PINx, and DDRx I/O registers.

is used to output data onto the port pins, while PINx is used to input data
from the port pins. Since each I/O pin can be read from or written to,
DDRx is used to control whether these lines function as input or output.
PORTx, PINx, and DDRx are mapped to the I/O Register address space
in Data Memory, e.g., PORTA is mapped to $3B and DDRA is mapped to
$3A (see Appendix C).

Figure 5.3 shows the PORTx, PINx, and DDRx I/O registers. For each
bit, ‘R/W’ indicates that the bit can be read as well as written, ‘R’ indicates
read only, and the number in parentheses indicates the initial value after
reset. Since PINx is read-only, writing a value to it has no effect. In addition,
the initial value of PINx is ‘N/A’ because its value depends on the value
provided by the external device connected to the port at reset.

Figure 5.4 shows a simplified diagram of how each bit of PORTx, PINx,
and DDRx are interfaced to their respective I/O pin. Note that this di-
agram does not include the Schmitt trigger, bidirectional tri-state buffers,
and other control signals required for its proper operation. Each I/O pin,
Pxn, is connected to a pair of latches PORTxn and PINxn, and a control
latch DDxn, where the suffix ‘n’ represents the bit position (7-0) within a
port ‘x’. PORTxn is used to send data to the pin and PINxn is used to re-
ceive data from the pin. The PORTxn latch has an additional purpose when
the pin is configured as input: Writing a 1 to it activates a pull-up resistor .
The purpose of a pull-up resistor will be discussed in Section 5.2.2. DDRxn
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Figure 5.4: A simplified diagram of a single pin of a port.

controls the direction of the pin, which can be either input or output. In-
ternal control signals for the three Tri-State Buffers 1∼3 control when the
data in PORTxn, PINxn, and DDRxn appear on the Data Bus.

Fig. 5.5 illustrates the configuration of an I/O pin for either input or
output. Fig. 5.5(a) shows how the pin can be configured for input. This is
done by writing a 0 on DDRxn, which causes the output of Tri-state Buffer 4
between Pxn and PORTxn to be in high-impedance state, i.e., open-circuit,
allowing the signal on Pxn to be latched onto PINxn. Fig. 5.5(b) shows
how the pin can be configured for output. Writing a 1 into DDRxn enables
Tri-state Buffer 4, which provides a direct connection between PORTxn and
Pxn.

The code below shows how Port A can be configured for input and
output.

; AVR Assembly code - Configuring Port A

.include "m128def.inc"

; Setting Port A for input

ldi r16, $00

out DDRA, r16 ; Write 0s to DDRA to set up for input

...

in r16, PINA ; Then use this instruction to read from PINA
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(b) Configuring for output.

Figure 5.5: Reading and writing to a port.

; Setting Port A for output

ldi r16, $ff

out DDRA, r16 ; Write 1s to DDRA setup for output

...
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Figure 5.6: Connection of motor control and bumper switches to PORTB
and PORTD in TekBot.

out PORTA, r16 ; Then use this instruction to write to PORTA

The combination of ldi (Load immediate) and out (Out port) instruc-
tions can be used to write either 0’s or 1’s to DDRA to configure Port A
to input or output. For input, the AVR I/O instruction in (In port) in-
struction can be used to move the content of PINA to R16. For output, the
AVR I/O instruction out (Out port) can be used to move the content of
r16 to DDRA. Note that both PINA and PORTA are I/O registers in the 64 I/O
register address space and their addresses are defined in the .m128def.inc

include file.

5.2.2 I/O Operations for TekBots

Now that we have discussed how to configure the I/O ports and perform
input and output, we are ready to discuss a more elaborate example of
an I/O operation using a TekBot , which is an AVR-microcontroller-based
programmable robot developed at the School of Electrical Engineering and
Computer Science, Oregon State University. TekBots are used by several
universities to help students learn some of the fundamental concepts in the
electrical and computer engineering field.

Figure 5.6 shows a picture of a TekBot, which is driven by a pair of
motorized wheels and is controlled by a board with an AVR ATmega128
microcontroller. It also has two switches (left and right) on the bumper to
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detect bumps. The right switch is connected to PORTD pin 0, while the
left switch is connected to PORTD pin 1. Detection of a bump initiates a
routine to turn the TekBot around. Right/Left engine enable is connected
to PORTB pins 4/7, where 0 turns on the motor and 1 turns off the motor.
Right/Left engine direction is connected to PORTB pins 5/6, where 1 moves
TekBot forward and 0 moves TekBot backward.

The code shown in Figure 5.7 controls the basic functionalities of a Tek-
Bot, which is to move forward until it bumps an object and then move
backward for one second then turn left or right for one second depending on
which switch is hit, and then move forward again. The program consists of
five main parts: (1) Interrupt Vectors, (2) Program Initialization, (3) Main
Program, (4) HitRight subroutine, and (5) Wait subroutine. Note that the
HitLeft subroutine, which is similar to the HitRight subroutine, has been
omitted to save space.

The code first starts with a series of .def and .equ directives that assign
symbolic names to registers (e.g., mpr, waitcnt, ilcnt, and olcnt) and
labels to values (e.g., WTime, WskrR, WskrL, etc.) to make it easier to keep
track of the code. The last few .equ directives also assign labels to values,
but these values are evaluated using expressions. For example, consider the
following definition:

.equ MovFwd = (1<<EngDirR|1<<EngDirL) ; Move Forward Command

The expression (1<<EngDirR|1<<EngDirL) takes two binary numbers 00000001
and 00000001, and shifts them left (defined by the ‘<<’ operator) by EngDirR

and EngDirL bit positions, which in turn was assigned as 5 and 6, respec-
tively. This results in binary numbers 00100000 and 01000000. Finally, these
two numbers are logically ORed (defined by the ‘|’ operator) to generate
the binary number 01100000, which is assigned to MovFwd.

Interrupt Vectors

Following the register definitions and constants, the very first part of the
actual program code contains two .org directives that indicate that (1)
rjmp INIT will be the first instruction executed when the TekBot is turned
on and (2) the rest of the code will be placed starting at location $0046.
When TekBot is turned on (or reset), the AVR microcontroller by default
sets PC to $0000 (see Section 5.3.1). This causes the processor to fetch and
execute the instruction located at $0000, which is the rjmp INIT instruc-
tion. The rjmp instruction jumps to label INIT that contains the code for
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; AVR Assembly code - Basic operations of Tekbot

.include "m128def.inc"

;***********************************************************

;* Internal Register Definitions and Constants

;***********************************************************

.def mpr = r16 ; Multipurpose register

.def waitcnt = r17 ; Wait Loop Counter

.def ilcnt = r18 ; Inner Loop Counter

.def olcnt = r19 ; Outer Loop Counter

.equ WTime = 100 ; Time to wait in wait loop

.equ WskrR = 0 ; Right Whisker Input Bit

.equ WskrL = 1 ; Left Whisker Input Bit

.equ EngEnR = 4 ; Right Engine Enable Bit

.equ EngEnL = 7 ; Left Engine Enable Bit

.equ EngDirR = 5 ; Right Engine Direction Bit

.equ EngDirL = 6 ; Left Engine Direction Bit

.equ MovFwd = (1<<EngDirR|1<<EngDirL) ; Move Forward Command

.equ MovBck = $00 ; Move Backward Command

.equ TurnR = (1<<EngDirL) ; Turn Right Command

.equ TurnL = (1<<EngDirR) ; Turn Left Command

.equ Halt = (1<<EngEnR|1<<EngEnL) ; Halt Command

;***********************************************************

;* Start of Code Segment

;***********************************************************

.cseg ; Beginning of code segment

;--------------------------------------------------------------

; Interrupt Vectors

;--------------------------------------------------------------

.org $0000 ; Reset and Power On Interrupt

rjmp INIT ; Jump to program initialization

.org $0046 ; End of Interrupt Vectors

;--------------------------------------------------------------

; Program Initialization

;--------------------------------------------------------------

INIT:

;; Initialize Stack ;;

; Initialize Port B for output

ldi mpr, (1<<EngEnL)|(1<<EngEnR)|(1<<EngDirR)|(1<<EngDirL)

out DDRB, mpr ; Set Port B Directional Register for output

; Initialize Port D for inputs

ldi mpr, (0<<WskrL)|(0<<WskrR)

out DDRD, mpr ; Set Port D Directional Register for input

ldi mpr, (1<<WskrL)|(1<<WskrR)

out PORTD, mpr ; Activate pull-up resistors

; Initialize TekBot Forward Movement

ldi mpr, MovFwd ; Load Move Forward Command

out PORTB, mpr ; Send command to motors

Figure 5.7: AVR Assembly Code for TekBot Movement.
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;---------------------------------------------------------------

; Main Program

;---------------------------------------------------------------

MAIN:

in mpr, PIND ; Get bumper switch input from Port D

com mpr ; Complement since bumpers are active low

andi mpr, (1<<WskrL)|(1<<WskrR) ; Mask out other bits

cpi mpr, (1<<WskrR) ; Check for Right Whisker input

brne NEXT ; Continue with next check

rcall HitRight ; Call the subroutine HitRight

rjmp MAIN ; Continue with program

NEXT:

cpi mpr, (1<<WskrL) ; Check for Left Whisker input

brne MAIN ; No Whisker input, continue

rcall HitLeft ; Call subroutine HitLeft

rjmp MAIN ; Continue through main

;----------------------------------------------------------------

; Sub: HitRight

; Desc: Functionality for TekBot when the right switch is triggered.

;----------------------------------------------------------------

HitRight:

; Move Backwards for a second

ldi mpr, MovBck ; Load Move Backwards command

out PORTB, mpr ; Send command to port

ldi waitcnt, WTime ; Wait for 1 second

rcall Wait ; Call wait function

; Turn left for a second

ldi mpr, TurnL ; Load Turn Left Command

out PORTB, mpr ; Send command to port

ldi waitcnt, WTime ; Wait for 1 second

rcall Wait ; Call wait function

; Move Forward again

ldi mpr, MovFwd ; Load Move Forward command

out PORTB, mpr ; Send command to port

ret ; Return from subroutine

;----------------------------------------------------------------

; Sub: Wait

; Desc: A wait loop that waits approx. waitcnt*10ms.

;----------------------------------------------------------------

Wait:

OLoop:

ldi olcnt, 224 ; (1) Load middle-loop count

MLoop:

ldi ilcnt, 237 ; (1) Load inner-loop count

ILoop:

dec ilcnt ; (1) Decrement inner-loop count

brne Iloop ; (2/1) Continue inner-loop

dec olcnt ; (1) Decrement middle-loop count

brne Mloop ; (2/1) Continue middle-loop

dec waitcnt ; (1) Decrement outer-loop count

brne OLoop ; (2/1) Continue outer-loop

ret ; Return from subroutine

Figure 5.7: AVR Assembly Code for TekBot Movement (cont.).
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initializing the I/O registers. As we will see in Section 5.3.1, the first 70
($46) locations in the Program Memory are dedicated for interrupts, called
interrupt vectors, and thus placing any code in this address space may cause
unwanted behavior. Therefore, .org $0046 causes the rest of the program
to be placed after the interrupt vectors.

Program Initialization

When the TekBot, and thus the processor, is turned on, the port pins that
are connected to the wheels and the left and right switches for the bumper
have to be appropriately configured. As shown in Figure 5.6, the engine
enable and engine direction signals for the left and right wheels are connected
to bits 7-4 of PORTB. These pins need to be configured as output to control
the motors. Note that one of the first things that needs to be done during
initialization is to set up the stack. The stack is needed to store return
addresses of subroutine calls as well as store and restore register values.
This part of the code has been omitted to simplify the discussion at hand,
but will be discussed in more detailed in Section 5.3. For now, let us assume
that the stack has been set up.

The first two instructions set the bits 7-4 of the DDRB register to 1’s en-
suring that the corresponding bits in PORTB will function as outputs. The
same is true for initializing PORTD, except it will be set for input. How-
ever, detecting when the bumper switches are triggered requires the use of
pull-up resistors. This is because a bumper switch is nothing more than a
passive switch. That is, when the bumper is hit, it turns on the switch;
otherwise, the switch is off. However, turning the switch on and off need to
be translated into 0 and 1 so that the processor can detect this on its I/O
pins.

Figure 5.8 shows how a pull-up resistor is used to latch 0 or 1 onto PINxn
when the switch is turned on or off, respectively. Figure 5.8(a) shows that
when the switch is not triggered (i.e., the switch is off), the voltage at the
input of PINxn is very close to the supply voltage, which is considered ‘high’.
When the switch is triggered and it becomes on as shown in Figure 5.8(b),
the voltage is pulled down to ground, which is considered ‘low’. Therefore,
when the switch is triggered, 0 is latched onto PINxn; otherwise, 1 is latched
onto PINxn. The pull-up resistor is activated by writing a 1 onto PORTxn
together with setting DDRxn to 1 for input. This causes the pass transistor
located between the supply voltage and the pull-up resistor to be turned on.

Once the ports are configured, writing $60 or 0b01100000 to PORTB causes
the TekBot to move forward. This is because the bits 6 and 5 that control
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Figure 5.8: Triggering of the bumper switches.

engine direction are set to 1’s and 7th and 4th bits that enable the engines
are set to 0’s.

Main Program

The Main Program is simply a loop that checks whether the right or left
bumper switch has been triggered. If a switch is hit, the corresponding PIND
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latches, i.e., bit 0 and bit 1 for the right and left switches, respectively, will be
cleared. Therefore, the Main Program checks the two switches in succession
by (1) loading the content of PIND and complementing it, (2) masking out
unrelated bits, and (3) comparing to see if the corresponding bit is zero, and
if so, execute either the HitRight or HitLeft subroutine.

HitRight Subroutine

When the right switch is hit, the TekBot moves backward for a second, then
turns left for a second, and then moves forward. This is achieved by first
setting both wheels to move backwards (i.e., both bits 5 and 6 of PORTB
are set to 0), and then setting the left wheel to move backward and the
right wheel to move forward (i.e., bits 5 and 6 of PORTB are set to 1 and 0,
respectively), and finally setting both wheels to move forward (i.e., both bits
5 and 6 of PORTB are set to 1). In addition, moving backwards and turning
left each requires a duration of one second. This is achieved by calling the
Wait subroutine.

Wait Subroutine

The Wait subroutine is coded to execute for approximately one second
(0.99962 sec to be exact!). The code structure is a triple-nested loop where
each iteration of the outer-most loop takes around 10 ms to execute. Thus,
the value passed to the r17 register is 100, which allows the triple-nested
loop to execute for 100×10 ms = 1 sec. Now, how do we know each itera-
tion of the outer-loop will take 10 ms to execute? The beauty of assembly
programming is that the programmer knows (or can find out) the number
of clock cycles each instruction takes to execute (see Appendix A for a com-
plete listing of cycles required for AVR instructions). Moreover, the clock
cycle time or clock period is known based on the clock frequency used by
the processor. For example, the ATmega128 version we are using has a 16
MHz clock rate, which results in a clock cycle time of 62.5 ns.

Now going back to our Wait subroutine, the number of cycles each in-
struction takes in the triple-nested loop is known (indicated in parenthesis).
For example, ldi and dec instructions each require one cycle to execute.
On the other hand, the brne instruction requires one cycle if the branch is
not taken, and two cycles if the branch is taken (the reason why this is the
case will be discussed in Chapter 8). Thus, the time required to execute one
iteration of the outer-loop, toloop, is given by the following equation:

toloop = ((((3× ilcnt)− 1 + 4)×mlcnt)− 1 + 4)× 62.5ns (5.1)
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The (3× ilcnt)− 1 portion of the equation represents the number of cycles
required for the inner-loop. This is because as long as the branch for the
inner loop is taken, each iteration takes 1 + 2 cycles. Thus, the total number
cycles required for the ilcnt iterations is (3× ilcnt). The -1 term comes from
the fact that the very last iteration of the inner-loop will be false and thus not
taken, which requires only 1 cycle rather than 2. The middle-loop consists
of the execution time for the inner-loop plus the ldi r18,237 instruction
before the inner-loop and ldi r18,237 and brne MLoop instructions after
the inner-loop. These three instructions require 4 cycles as long as brne

MLoop is taken. Therefore, (((3× ilcnt)− 1 + 4)×mlcnt)− 1 represents the
execution time for the middle loop with the assumption that the last branch
instruction is not taken. The execution for the outer-loop is evaluated in
a similar manner. Thus, with mlcnt equal 224 and ilcnt equal to 237, the
number of cycles required for each iteration of the outer-loop, Cycoloop, is
159,935 clock cycles leading to a delay of 9.996 ms.

Therefore, the number of cycles required for the Wait subroutine, CycWAIT ,
is given by Equation 5.2.

CycWAIT = Cycoloop × waitcnt− 1 + 7 (5.2)

where the -1 terms comes from the fact brne OLoop is not taken in the last
iteration, 7 cycles are required to execute rcall Wait (3 cycles) and ret

(4 cycles), and waitcnt is the value in r7. Finally, the time required to call
the Wait subroutine, execute the subroutine, and then return is 15,993,906
cycles × 62.5 ns =0.99962 sec.

You may wonder if there is a simpler way to wait for a second, and
fortunately there is. In Section 5.4, we will discuss about Timer/Counters
that can be used to implement the Wait subroutine as well a variety of other
timing related functions. However, the main purpose of this discussion was
to (1) show that assembly programmers have complete control of their code’s
timing and (2) illustrate nested loops.

5.3 Interrupts

In the code for TekBot movement shown in Figure 5.7, the loop in the
Main Program constantly checks whether or not a switch is triggered. This
method of checking for an external event is referred to as busy waiting .
Unfortunately, a processor busy-waiting expends all its processing power
waiting for events to occur. A better method is to use interrupts. An
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interrupt is signaling of an unexpected event, in terms of timing, that causes
a change in the normal program flow. This allows the processor to execute
a program, and when an external event occurs, suspend the program and
service the external event and then resume the execution of the program.
This is an important concept because it allows an I/O device to informed
the processor when it needs to be serviced rather than the other way around
and frees the processor to perform other tasks.

An external event can come in many forms. Some examples are

• I/O device is ready to send or receive data
• Universal Synchronous Asynchronous Receiver/Transmitter (USART)

transmit buffer is empty.
• I/O device has input ready
• Key pressed on a keyboard
• A TekBot bumper switch is triggered
• An internal timer generates an interrupt periodically

Note that interrupts are different from traps, which are caused by either
events that occur within the processor or by software. For this reason, traps
are also called software interrupts. Some examples of events that generate
traps are

• Overflow
• Divide by zero
• Undefined opcode
• SWI (software interrupt)

The main difference between interrupts and traps is that the latter is
synchronous with respect to instruction execution, while the former is asyn-
chronous. This means a trap is either caused or generated by an instruction,
whereas an interrupt can occur at any time due to an external event.

This section discusses the concept of interrupt. Section 5.3.1 presents
the interrupt facility provided by AVR microcontrollers. This is followed by
an interrupt-based TekBot example.

5.3.1 AVR Interrupt Facility

AVR ATmega128 microcontrollers can handle 35 interrupt sources, which
consists of

• Reset
• 8 External Interrupt Requests
• 4 Timer/Counters with Compare Match and Overflow
• ADC Conversion Complete
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Figure 5.9: The process of handling interrupts.

• USART Tx/Rx complete
• SPI Serial Transfer Complete
• · · · and many more

Reset is the most fundamental form of interrupt that gets triggered when
the processor is powered on. External interrupts are triggered on pins INT7-
INT0 (see Figure 5.11), and thus up to eight interrupt sources can be con-
nected to the microcontroller. In contrast to external interrupts, Timers/-
Counters are integrated into the microcontroller, and thus generate internal
interrupts. Analog-to-Digital Converter (ADC), as the name suggest, con-
verts an analog input signal to 10-bit binary values. Universal Synchronous
Asynchronous Receiver/Transmitter (USART) is a transceiver that trans-
lates data between parallel and serial forms (i.e., from bytes to bits, and vice
versa), and thus implements a serial port (e.g., RS-232). Serial Peripheral
Interface (SPI) is another serial link that operates in a synchronous fashion.

Now that we have discussed the interrupt sources for the AVR micro-
controller, we are ready to discuss how interrupts from these sources are
handled. Figure 5.9 illustrates the interrupt handing process. First, the
processor checks for an interrupt at the end of each instruction execution. If
there is no interrupt, the processor fetches and executes the next instruction.
If an interrupt occurred, the processor pushes the return address, which is
the address of the next instruction to be fetched and executed (i.e., PC+1),
onto the stack. Next, the source of the interrupt is identified, which allows
the appropriate Interrupt Service Routine (ISR) to be executed. The state
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of the processor is also saved and restored before and after executing the
ISR, respectively. After the ISR completes, the control flow returns to the
point where the interrupt occurred and the user program execution resumes.

The following discusses each of these steps in detail.

Interrupt Detection

The AVR microcontroller’s interrupt facility needs to be configured before
it can be used. The first thing that needs to be done is to turn on the
interrupts. This is done by setting the MSB of the SREG, called the Global
Interrupt Enable (I-bit), shown in Figure 4.5. As the name suggests, the I-bit
needs to be set to allow interrupts to be detected. As shown in Table 4.19,
the I-bit can be directly set using SEI (Set global interrupt flag) or cleared
using CLI (Global interrupt disable). In addition, the I-bit is automatically
cleared after an interrupt is detected and set by the RETI (Return from
interrupt) instruction. Therefore, the default behavior is to not allow other
interrupts from occurring while the current interrupt is being serviced. This
behavior can easily be changed by manually setting the I-bit and allowing
other devices to interrupt the processor. Furthermore, different interrupts
can be prioritized by allowing a higher priority device interrupt a lower
priority device.

Determining the Source of Interrupt

When an interrupt occurs, each interrupt source is mapped to a vector , i.e.,
an address in the Program Memory. In other words, the PC is updated
with a vector that corresponds to the interrupt source, which allows the
control flow to be redirected to the corresponding ISR. Table 5.1 shows the
interrupt vector table that defines how various interrupt sources are mapped
to the different locations in the Program Memory. For example, RESET is
mapped to the Program Memory location $0000 and has the highest priority.
This is followed by the eight external interrupts (INT0-INT7). The rest of
the vectors provide mapping for the other interrupt sources, and will be
discussed in the latter part of this chapter.

Each vector is allocated with two Program Memory words (i.e., 32 bits),
which allows for either a jump or subroutine call (either 16-bit or 32-bit
version) to transfer the control flow to the corresponding ISR. Figure 5.10
shows an example code of how interrupt vectors may be set up. In this exam-
ple, when the processor is reset, this interrupt is detected and the program
counter is loaded with the address of its vector (i.e., $0000). This causes
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Table 5.1: Interrupt vectors

Vector. Program Source Interrupt
No. Address Definition

1 $0000 RESET Hardware Reset
2 $0002 INT0 External Interrupt Request 0
3 $0004 INT1 External Interrupt Request 1
4 $0006 INT2 External Interrupt Request 2
5 $0008 INT3 External Interrupt Request 3
6 $000A INT4 External Interrupt Request 4
7 $000C INT5 External Interrupt Request 5
8 $000E INT6 External Interrupt Request 6
9 $0010 INT7 External Interrupt Request 7
10 $0012 TIMER2 COMP Timer/Counter2 Compare Match
11 $0014 TIMER2 OVF Timer/Counter2 Overflow
12 $0016 TIMER1 CAPT Timer/Counter1 Capture Event
13 $0018 TIMER1 COMPA Timer/Counter1 Compare Match A
14 $001A TIMER1 COMPB Timer/Counter1 Compare Match B
15 $001C TIMER1 OVF Timer/Counter1 Overflow
16 $001E TIMER0 COMP Timer/Counter0 Compare Match
17 $0020 TIMER0 OVF Timer/Counter0 Overflow
18 $0022 SPI, STC SPI Serial Transfer Complete
19 $0024 USART0, RX UASRT0, Rx Complete
20 $0026 USART0, UDRE USART0 Data Register Empty
21 $0028 USART0, TX USART0, Tx Complete
22 $002A ADC ADC Conversion Complete
23 $002C EE READY EEPROM Ready
24 $002E ANALOG COMP Analog Comparator
25 $0030 TIMER1 COMPC Timer/Counter1 Compare Match C
26 $0032 TIMER3 CAPT Timer/Counter3 Capture Event
27 $0034 TIMER3 COMPA Timer/Counter3 Compare Match A
28 $0036 TIMER3 COMPB Timer/Counter3 Compare Match B
29 $0038 TIMER3 COMPC Timer/Counter3 Compare Match C
30 $003A TIMER3 OVF Timer/Counter3 Overflow
31 $003C USART1, RX USART1, Rx Complete
32 $003E USART1, UDRE USART1 Data Register Empty
33 $0040 USART1, TX USART1, Tx Complete
34 $0042 TWI Two-wire Serial Interface
35 $0044 SPM READY Store Program Memory Ready

the processor to jump to the ISR located at label RESET, which is usually
an initialization routine to set up the microcontroller. Similarly, other in-
terrupt sources can be set up by placing control flow transfer instructions
in their respective interrupt vectors and providing dedicated ISRs. Note
that .ORG directives in the code not only indicate the beginning addresses of
interrupt vectors but are also necessary because RJMP instructions are 16-bit
instructions. If we had used JMP instructions, which are 32-bit instructions,
then .ORG directives can be omitted. However, its good practice to include
them to clearly indicate the locations of the interrupt vectors.
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; AVR Assembly Code - Setting up interrupt vectors

.ORG $0000

RJMP RESET

.ORG $0002

RJMP EXT_INT0 ; External Interrupt Request 0

.ORG $0004

RJMP EXT_INT1 ; External Interrupt Request 1

... ...

.ORG $0010

RJMP EXT_INT7 ; External Interrupt Request 7

.ORG $0012

RJMP TIME2_COMP ; Timer/Counter2 Compare Match

.ORG $0014

RJMP TIME2_OVF ; Timer/Counter2 Overflow

...

; ISR for RESET

RESET:

...

...

RETI

...

; ISR for External Interrupt 0

EXT_INT0:

...

...

RETI

...

Figure 5.10: An example code for setting up interrupt vectors.

Saving and Restoring the Processor State

As mentioned before, an interrupt is an unexpected event from the point-
of-view of the user program. Therefore, servicing an interrupt must be
non-intrusive to the user program, i.e., the state of the processor , which is
defined by PC, SREG, and GPRs, must not be changed. This way, when the
control flow returns to the user program after executing the ISR, the state
of the processor would be identical to the way it was before the interrupt
was serviced. Thus, the state of the processor must be stored and restored
before and after servicing the interrupt.

Although the processor automatically pushes the PC onto the stack,
the programmer will have to save and restore GPRs and SREG if the ISR
uses them. These registers can be saved on the stack using the PUSH (Push
register on stack) instruction and restored from the stack using the POP (Pop
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Figure 5.11: External interrupt pins.

register from stack) instruction.

5.3.2 AVR External Interrupts

Now that we have discussed the general concept of interrupts, this subsection
presents the details on how to handle AVR external interrupts. AVR can
handle up to eight external interrupts generated by I/O devices connected
to pins INT7 - INT0. These pins are shown in Figure 5.11, where INT7-4
are connected to PORTE pins 7-4, while INT3-0 are connected to PORTD
pins 3-0.

Figure 5.12 shows the set of I/O registers that control how external
interrupts will be detected. The eight external interrupts INT7 - INT0
are detected by the processor by latching their signals to External Interrupt
Flag Register (EIFR). These signals can be masked using External Interrupt
Mask Register (EIMSK), which basically allows each interrupt to be either
detected or ignored. An interrupt can also be triggered by a falling edge,
rising edge, or low level input signal by setting up External Interrupt Control
Registers (EICR), which consists of a pair of 8-bit registers EICRA and
EICRB.

Figure 5.13 illustrates how these registers are conceptually organized.
EIFR latches interrupts from INT7-INT0, and when an interrupt is detected,
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INTF7 INTF6 INTF5 INTF4 INTF3 INTF2 INTF1 INTF0
7 6 5 4 3 2 1 0

EIFR

R/W (0) R/W (0) R/W (0) R/W (0) R/W (0) R/W (0) R/W (0) R/W (0)

INT7 INT6 INT5 INT4 INT3 INT2 INT1 INT0
7 6 5 4 3 2 1 0

EIMSK

R/W (0) R/W (0) R/W (0) R/W (0) R/W (0) R/W (0) R/W (0) R/W (0)

ISC31 ISC30 ISC21 ISC20 ISC11 ISC10 ISC01 ISC00
7 6 5 4 3 2 1 0

EICRA

R/W (0) R/W (0) R/W (0) R/W (0) R/W (0) R/W (0) R/W (0) R/W (0)

INTFn = 1 Triggers interrupt request

External Interrupt Flag Register (EIFR)

External Interrupt Mask Register (EIMSK)

External Interrupt Control Register A (EICRA)

INTn = 1 Enables interrupt

ISC71 ISC70 ISC61 ISC60 ISC51 ISC50 ISC41 ISC40
7 6 5 4 3 2 1 0

EICRB

R/W (0) R/W (0) R/W (0) R/W (0) R/W (0) R/W (0) R/W (0) R/W (0)

ISCn1:0 External Interrupt n Sense Control Bits  
00 - Low level generates an interrupt request.
01 - Reserved (for ISC3-0)
        Any logical change on generates an interrupt request (ISC7-4)
10 - Falling edge generates an interrupt request.
11 - Rising edge generates an interrupt request.

External Interrupt Control Register B (EICRB)

Figure 5.12: Control registers for interrupts.

it transfers the control to the corresponding ISR and clears the interrupt flag.
These interrupt flags can also be manually cleared by writing 1’s (yes, 1’s
not 0’s!) to these bits. How the transfer of control is done will be discussed
shortly. The EIMSK register is used to mask out unwanted interrupts. This
can be thought of as a safety measure to prevent an undesired event (e.g.,
static electricity) from triggering an interrupt.

Finally, a pair of bits controls how the corresponding sense amplifier
detects each external interrupt, which are referred to as Interrupt Sense
Control bit 1 and bit 0 (ISCn1 and ISCn0). Thus, there are 16 ISCn
bits spread across EICRA and EICRB. EICRA controls how interrupts are
sensed for INT3-INT0, while EICRB controls how interrupts are sensed for
INT7-INT4. EICRA has three options available for controlling how INT3-
INT0 are detected; low-level (00), falling edge (10), and rising edge (11).
On the other hand, EICRB provides one additional option for INT7-INT4,
i.e., any level change (01).
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Figure 5.13: Controlling interrupts.

5.3.3 Interrupt-based TekBot Example

We conclude this section by developing an interrupt version of the TekBot
Movement code discussed in Section 5.2.2.

Figure 5.14 shows the interrupt version of the TekBot Movement code.
As seen previously in the basic Tekbot Movement code example in Figure 5.7,
the code begins with a series of .def and .equ directives that assign symbolic
names to registers and labels to values. Next, the interrupt vectors for
INT0 and INT1, which are connected to the right and left bumper switches,
respectively, are set up to transfer the control to appropriate ISRs. This is
done by using .org $0002 and .org $0004 to place subroutine calls (i.e.,
rcall) to ISRs HitRight and HitLeft. Note that each of these subroutine
calls is immediately followed by the reti instruction, which sets the I-bit in
the SREG and returns to the instruction after the interrupt was detected.

The Program Initialization section starts by setting up the stack. As
mentioned before, the stack is an important data structure for storing and
restoring of return addresses of subroutine calls and register values. Fig-
ure 5.15 illustrates the process of setting up the stack. The functions
high(RAMEND) and low(RAMEND) return the high and low bytes of the ad-
dress of the very last location in Data Memory, i.e., location $10FF. This
location is defined by label RAMEND (End of SRAM ), which is defined in



5.3. INTERRUPTS 149

; AVR assembly code - Tekbot Movement (interrupt version)

.include "m128def.inc" ; Include definition file

;***********************************************************

;* Internal Register Definitions and Constants

;***********************************************************

.def mpr = r16 ; Multipurpose register

.def waitcnt = r17 ; Wait Loop Counter

.def ilcnt = r18 ; Inner Loop Counter

.def olcnt = r19 ; Outer Loop Counter

.equ WTime = 100 ; Time to wait in wait loop

.equ WskrR = 0 ; Right Whisker Input Bit

.equ WskrL = 1 ; Left Whisker Input Bit

.equ EngEnR = 4 ; Right Engine Enable Bit

.equ EngEnL = 7 ; Left Engine Enable Bit

.equ EngDirR = 5 ; Right Engine Direction Bit

.equ EngDirL = 6 ; Left Engine Direction Bit

.equ MovFwd = (1<<EngDirR|1<<EngDirL) ; Move Forward Command

.equ MovBck = $00 ; Move Backward Command

.equ TurnR = (1<<EngDirL) ; Turn Right Command

.equ TurnL = (1<<EngDirR) ; Turn Left Command

.equ Halt = (1<<EngEnR|1<<EngEnL) ; Halt Command

;***********************************************************

;* Start of Code Segment

;***********************************************************

.cseg ; Beginning of code segment

;-----------------------------------------------------------

; Interrupt Vectors

;-----------------------------------------------------------

.org $0000 ; Beginning of Interrupt Vectors

rjmp INIT ; Reset interrupt

.org $0002 ; INT0 => pin0, PORTD

rcall HitRight ; Call HitRight subroutine

reti ; Return from interrupt

.org $0004 ; INT1 => pin1, PORTD

rcall HitLeft ; Call HitLeft subroutine

reti ; Return from interrupt

.org $0046 ; End of Interrupt Vectors

;-----------------------------------------------------------

; Program Initialization

;-----------------------------------------------------------

INIT: ; The initialization routine

; Initialize Stack Pointer

ldi mpr, high(RAMEND)

out SPH, mpr

ldi mpr, low(RAMEND)

out SPL, mpr

Figure 5.14: Interrupt-based code for Tekbot movement.
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; Initialize Port B for output

ldi mpr, (1<<EngEnL)|(1<<EngEnR)|(1<<EngDirR)|(1<<EngDirL)

out DDRB, mpr ; Set the DDR register for Port B

; Initialize Port D for input

ldi mpr, (0<<WskrL)|(0<<WskrR)

out DDRD, mpr ; Set the DDR register for Port D

ldi mpr, (1<<WskrL)|(1<<WskrR)

out PORTD, mpr ; Set the Port D to Input with Hi-Z

; Initialize external interrupts (to trigger on falling edge)

ldi mpr, (1<<ISC01)|(0<<ISC00)|(1<<ISC11)|(0<<ISC10)

sts EICRA, mpr ; Use sts, EICRA is in extended I/O space

; Set the External Interrupt Mask

ldi mpr, (1<<INT0)|(1<<INT1)

out EIMSK, mpr

; Turn on interrupts

sei

;-----------------------------------------------------------

; Main Program

;-----------------------------------------------------------

MAIN:

; Move Robot Forward

ldi mpr, MovFwd ; Load FWD command

out PORTB, mpr ; Send to motors

rjmp MAIN ; Infinite loop. End of program.

;------------------------------------------------------------------------

; Sub: HitRight

; Desc: Functionality for when the right bumper switch is triggered.

;------------------------------------------------------------------------

HitRight:

push mpr ; Save mpr register

push waitcnt ; Save wait register

in mpr, SREG ; Save program state

push mpr ;

; Move Backwards for a second

ldi mpr, MovBck ; Load Move Backwards command

out PORTB, mpr ; Send command to port

ldi waitcnt, WTime ; Wait for 1 second

rcall Wait ; Call wait function

; Turn left for a second

ldi mpr, TurnL ; Load Turn Left Command

out PORTB, mpr ; Send command to port

ldi waitcnt, WTime ; Wait for 1 second

rcall Wait ; Call wait function

pop mpr ; Restore program state

out SREG, mpr ;

pop waitcnt ; Restore wait register

pop mpr ; Restore mpr

ret ; Return from subroutine

Figure 5.14: Interrupt-based code for Tekbot movement (cont.)
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Figure 5.15: Initializing the stack.

External Interrupt Control Register A (EICRA) 
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Enabled  

Figure 5.16: Initializing interrupts.

the m128def.inc include file. In addition, this include file also defines SPH

(Stack Pointer high) and SPL (Stack Pointer low) as the the high and low
bytes of the SP register. Therefore, SP initialization portion of the code
moves $10FF into the SP register. The rest of the Program Initialization
involves setting up the ports and interrupt handling. Initialization of ports
are similar to the busy-waiting version, with expressions used to define bit
patterns for Data Direction Registers DDRB and DDRD.

Initialization of the external interrupts is done by appropriately setting
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bits for EICRA and EIMSK registers. If you recall, the left and right bumper
switches are connected to pins 1 and 0 of Port D, respectively (see Fig-
ure 5.6). There was a reason for this; these pins also happen to serve as
INT1 and INT0 as shown in Figure 5.11.

Figure 5.16 illustrates the initialization of INT1 and INT0 to trigger on
a falling edge, which is done because hitting a switch results in a voltage
transition from high to low (when pull-up resistors are enabled). The in-
structions shown below uses labels ISC11, ISC10, ISC01, and ISC00 to define
the bit positions 3-0 within the EICRA register.

ldi mpr, (1<<ISC01)|(0<<ISC00)|(1<<ISC11)|(0<<ISC10)

sts EICRA, mpr ; Set INT0 & 1 to trigger on falling edge

Note that these labels are predefined in the m128def.inc include file. This
combined with shift operations generate the bit pattern 00001010, which is
then written to the EICRA register. As shown in Figure 5.13, this causes
interrupt signals on INT1 and INT0 to be triggered on a falling edge.

Similarly, the instructions shown below uses labels INT1,and INT0 to
define the bit positions 1 and 0 within the EIMSK register to generate the bit
pattern 00000011.

ldi mpr, (1<<INT0)|(1<<INT1)

out EIMSK, mpr

Again, these labels are defined in the m128def.inc include file. When this
value is written into the EIMSK register, all other interrupts are masked
except for INT1 and INT0. The last part of the Program Initialization is to
enable the interrupt using sei (Set global interrupt flag).

The HitRight routine is basically the same as the busy-wait version, but
includes additional instructions to store the SREG and registers that were
used by the main program before the interrupt occurred. This is achieved
by pushing mpr (r16), waitcnt (r17), and SREG registers onto the stack.
Note that pushing SREG onto the stack requires first moving it to a GPR
(mpr) and then pushing it onto the stack. This is because the push instruc-
tion only works with GPRs and SREG is located in the I/O register address
space (locations $5E and $5D for SPH and SPL, respectively). Thus, the I/O
instruction in has to be used to first move it to a GPR.
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Finally, with the interrupt facility setup, the Main Program is much
simpler than the busy-waiting version. It simply involves repeatedly writing
the bit pattern 0110000, which is generated based on the shift operations
and directives defined for EngDirL, EngDirR, and MovFwd, into the PORTB
register to move the TekBot forward. Although the Main Program of this
code performs a very simple operation, the interrupt facility allows you to
implement more complex operations.

5.4 Timers/Counters

Timer/Counters are one of the most commonly used features in a microcon-
troller. A Timer/Counter can be used to measure some elapsed time (clock
cycles or ticks) or external events, e.g., the time between the leading edge of
two input pulses. They can also be used to generate periodic outputs (i.e.,
a pulse train) to provide a baud rate clock to a USART (see Section 5.5) or
to drive external devices, such as a DC motor.

AVR ATmega128 has two 8-bit Timer/Counters (Timer/Counter0 and
2) and two 16-bit Timer/Counters (Timer/Counter1 and 3). Each tick of
the internal clock either increments or decrements the contents of these
Timer/Counters.

5.4.1 Timer/Counter0 and 2

Figure 5.17 shows a block diagram of Timer/Counter0 , which is an 8-
bit Timer/Counter and consists of three user accessible registers: Timer/-
Counter 0 register (TCNT0), Output Compare Register 0 (OCR0), and
Timer/Counter Control Register 0 (TCCR0). TCNT0 is controlled by the
Control Logic using three signals: The count signal enables counting, the
direction signal selects between counting up or down, and the clear signal
resets the count to zero.

The most basic way to use Timer/Counter0 is to write a value to TCNT0
and then let it count up to its maximum value – 255 for TCNT0 and 2
and 65,535 for TCNT1 and 3. When the count rolls over, the Timer/-
Counter Overflow 0 (TOV0) flag is set, which can be either manually de-
tected (see Section 5.4.4) or used to automatically generate an interrupt
(see Section 5.4.3). Thus, the elapsed time will be the difference between
the maximum value and the value written to TCNT0 multiplied by the clock
period. TCNT0 can also be used together with OCR0 to compare the two
values, and if they are equal, a match is signaled by setting the Output
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Figure 5.17: Block diagram of Timer/Counter0.

Compare Flag 0 (OCF0) at the next timer clock cycle. Similar to TOV0,
OCF0 can be either manually detected or used to generate an interrupt.
Both TOV0 and OCF0 can also be used to generate a waveform output on
the Output Compare pin 0 (OC0) using the Waveform Generator .

TCNT0 counts up (or down) with each tick of the Timer/Counter0 clock
(clkT0), which is by default connected to the system clock. This clock can
also be scaled by setting the Prescaler module that controls the rate at which
TCNT0 is incremented (or decremented). Timer/Counter0 can also be asyn-
chronously clocked from external clocks connected to Timer Oscillator pin 1
and 2 (TOSC1 and 2), which are bits 4 and 3 on Port G, respectively. The
exact behavior of Timer/Counter0 depends on its mode of operation (see
Section 5.4.4), which is controlled by setting TCCR0 (see Section 5.4.5).

Timer/Counter2 is also an 8-bit Timer/Counter with features almost
identical to Timer/Counter0. The only difference is that Timer/Counter2
can be clocked by a single external clock source on the Timer/Counter2
Clock Input (T2) pin, which is bit 7 on Port D.

5.4.2 Timer/Counter1 and 3

16-bit Timer/Counter1 and 3 have similar functionalities as Timer/Counter0
and 2, but provide much higher range. Since both Timer/Counter1 and 3
are the same, we will only discuss the operations of Timer/Counter1.

The block diagram of the Timer/Counter1 is shown in Figure 5.18, which
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Figure 5.18: Block diagram of Timer/Counter1.

consists of 16-bit Timer/Counter 1 register (TCNT1) and three 16-bit Out-
put Compare Registers (OCR1A, OCR1B, and OCR1C). Since all of these
registers are 16 bits, each consists of a high byte and a low byte, e.g.,
TCNT1H and TCNT1L.

Similar to TCNT0, a value can be loaded onto TCNT1, which counts
up to 65,535 (i.e., 0xFFFF) and when it rolls over (i.e., transition from
65,535 to 0) the Timer/Counter Overflow 1 (TOV1) flag is set and can be
used to generate an interrupt (see Section 5.4.4). The value of TCNT1 can
also be continuously compared with OCR1A-C, and when a match occurs
the corresponding Output Compare Flag (OCF1A, OCF1B, or OCF1C)
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is set in the next clock cycle. These flags can then be used to generate
output compare interrupts. These OCF1A-C signals can also be used by
their respective Waveform Generators to generate waveform outputs based
on the operating mode discussed in Section 5.4.4.

Timer/Counter1 also has a 16-bit Input Capture Register 1 (ICR1),
which is used to measure pulse widths of an incoming signal. This is done by
the Edge Detect and Noise Cancel module that captures external events by
associating timestamps. The captured timestamps can be used to calculate
frequency, duty cycle, and other characteristics of the applied signal. The
external signal indicating an event or multiple events can applied to the In-
put Capture Pin 1 (ICP1), which is pin 4 on Port D. When an event (logic
change) occurs on the ICP1 pin, a capture will be triggered. This causes the
content of TCNT1 to be written to ICR1 and Input Capture Flag 1 (ICF1)
is set, which can then be used to generate an interrupt. The output of the
Analog Comparator can also be used to trigger a capture (see Section 5.9).

5.4.3 Timer/Counter Interrupt Mask and Interrupt Flag Reg-
isters

In order to use Timer/Counter Overflow flags (TOV0 and TOV1) and Out-
put Compare Flags (OCF0, OCF1A, OCF1B, and OCF1C) as interrupts,
they first need to be enabled. This is done using the Timer/Counter In-
terrupt Mask Register (TIMSK). Figure 5.19 shows how Timer/Counter0
and 1 are connected to Timer/Counter Interrupt Flag Register (TIFR) and
TIMSK.

For Timer/Counter0, the OCF0 and TOV0 flags are masked by Timer/-
Counter0 Output Compare Match Interrupt Enable (OCIE0) and Timer/-
Counter0 Overflow Interrupt Enable (TOIE0) bits, respectively, in the TIMSK
register. Therefore, OCIE0 and TOIE bits must be set to 1 to enable these
interrupts.

For Timer/Counter1, ICF1, OCF1A, OCF1B, OCF1C, and TOV1 flags
are masked by Timer/Counter Input Capture Interrupt Enable 1 (TICIE1),
Timer/Counter1 Output Compare A Match Interrupt Enable (OCIE1A),
Timer/Counter1 Output Compare B Match Interrupt Enable (OCIE1B),
and Timer/Counter1 Overflow Interrupt Enable (TOIE1) bits, respectively,
in the TIFR register. Note that OCF1C is detected by the OCF1C bit in the
Extended Timer/Counter Interrupt Flag Register (ETIFR) and is masked
by OCIE1C bit in the Extended Timer Interrupt Mask Register (ETIMSK),
which are not shown in their entirety.
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Figure 5.19: TIMSK and TIFR registers.

5.4.4 Modes of Operation

There are several modes of operation with Timer/Counters. This subsection
discusses the three most commonly used modes, which are Normal, Clear
Timer on Compare Match (CTC), and Fast Pulse Width Modulation (Fast
PWM). There are two other less commonly used modes called Phase Correct
PWM and Phase and Frequency Correct PWM that provide additional fea-
tures, but these two modes will not be discussed. Instead, interested readers
are encourage to look at the ATmega128 Datasheet. In addition, Table 5.2
defines some important Timer/Counter values used throughout this section.

Normal and CTC Modes

Figure 5.20 illustrates the basic operations of the Normal and CTC modes.
In the Normal mode, TCNT0 is loaded with a value and the TOV0 flag in
TIFR is set (see Figure 5.19) when the counter rolls over (i.e., transitions
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Table 5.2: Definitions for BOTTOM, MAX, and TOP

BOTTOM The Timer/Counter reaches the BOTTOM when it be-
comes zero (i.e., 0x00 or 0x0000).

MAX The Timer/Counter reaches its MAX when it becomes
0xFF or 0xFFFF.

TOP The Timer/Counter reaches the TOP when it becomes
the highest value in the count sequence. The TOP value
can be the value stored in one of the OCRs, i.e., OCR0,
OCR1A, OCR1B, and OCR1C, or assigned to 0xFF or
0xFFFFF (i.e., MAX). The assignment is dependent on
the mode of operation.

Timer
start

Load value

BOTTOM
(0x00)

MAX = TOP
(0xFF)

TOV0 set
Timer
end

Delay

TCNT0

(a) Normal mode

Timer
start

BOTTOM
(0x00)

MAX
(0xFF)

OCF0 set
Timer
end

Delay

TCNT0
TOP = OCR0

(b) CTC mode

Figure 5.20: Timing diagrams of Normal and CTC modes for Timer/-
Counter0.

from 0xFF to 0x00 for TCNT0 and 2 or 0xFFFF to 0x0000 for TCNT1 and
3). On the other hand, in the CTC mode, the count starts at 0 and OCR0
is used to control when the counting ends. The content of OCR0 defines the
TOP value and thus its resolution. Moreover, TCNT0 is reset to zero when
TCNT0 and OCR0 match.

Note that both TOV0 and OCF0 need to be cleared, which is achieved
by writing 1 to these flags, before they can be used again. Moreover, in
order to generate interrupts on TOV0 and OCF0, these flags need to be
enabled by setting the TOIE0 and OCIE0 bits in the TIMSK register (see
Figure 5.19). In addition, the loaded value for the Normal mode and the
OCR0 value for the CTC mode can be adjusted using interrupts.

For the Normal mode, the time or delay period between when a Timer/-
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Counter is loaded with a value and its corresponding TOV0 flag is set,
DelayNormal, is given by the following equations:

DelayNormal =
(MAX + 1− value) · prescale

clkI/O
, (5.3)

where value is the initial count, MAX represents 255 for TCNT0 and 2 and
65,535 for TCNT1 and 3, clkI/O represents the I/O clock frequency, and
prescale can be 1, 8, 32, 64, 128, 256 or 1024 (see Table 5.3). The prescale
can be adjusted by configuring TCCR0, which will be discussed later in
Section 5.4.5.

For the CTC mode, the time or delay period between when a Timer/-
Counter start at 0 and its corresponding OCF0 flag is set, DelayCTC , is
given by the following equations:

DelayCTC =
(TOP + 1) · prescale

clkI/O
, (5.4)

where TOP represents the value in OCR0.
The following two examples show how TCNT0 can be used in Normal

mode.

Example 5.1. Suppose we want a delay of 10 ms using Timer/Counter0
with the system clock frequency of 16 MHz using the Normal mode.

16 MHz system clock leads to a clock period of 62.5 ns. Solving for value in
Equation 5.3 leads to the following equation:

value = 256− 10ms

prescale× 62.5ns

In general, any combination of value and prescale that satisfies the above
equation will work. However, we would like to use a prescale value that
would lead to the highest resolution (i.e., lowest prescale value) and yet the
period can be covered by the timer count. Prescale values of 1, 8, 32, 64,
128, and 256 will all not work since they result in the second component of
the above equation to be larger than 256. Therefore, a prescale of 1024 will
be used resulting in each tick to be 62.5 ns × 1024 = 64 µs. Thus, the value
to be loaded onto TCNT0 is d256 - (10 ms/64 µs)e = 100, which leads to a
delay period of 9.98 ms. We can get this delay to be much closer to 10 ms
by using a higher resolution 16-bit Timer/Counters, but we will limit our
discussion to 8-bit Timer/Counters. Instead, using a 16-bit Timer/Counter
is left as an exercise.
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Example 5.2. Write a subroutine called WAIT 1sec that waits for 1 sec
before returning using the delay derived in Example 5.2. Assume the mi-
crocontroller has already been configured to operate in Normal mode with a
prescale of 1024.

The code shown below implements a 1 sec delay, where the basic idea is
to execute 10 ms delay 100 times. This is done by setting up an outer-most
loop that executes 100 times, and for each iteration, the value 100 is loaded
onto the Timer/Counter0 register. Afterwards, the TOV0 flag is repeatedly
tested until it is set indicating 10 ms has elapsed. TOV0 is reset by writing
a 1 to the flag, and the outermost loop count is decremented. This process
repeats until count reaches 0.

; AVR assembly code - Wait one second

WAIT_1sec:

LDI R17, 100 ; Load count = 100

WAIT_10msec:

LDI R16, 100 ; Value for delay = 100

OUT TCNT0, R16 ; (Re)load a value for delay

LOOP:

IN R18,TIFR ; Read in TOV0

ANDI R18, 0b00000001 ; Check if its set

BREQ LOOP ; Loop if TOV0 not set

LDI R18, 0b00000001 ; Reset TOV0

OUT TIFR, R18 ; Note - write 1 to reset

DEC R17 ; Decrement count

BRNE WAIT_10msec ; Loop if count not equal to 0

RET

In addition to measuring some elapsed time, the CTC mode can be used
to generate a waveform on the OC0 pin, which is the pin 4 on Port B, by
toggling, setting, or clearing it on each match. For example, the waveform
shown in Figure 5.21 is generated by configuring the CTC mode to toggle
the OC0 pin each time TCNT0 and OCR0 match. Thus, two iterations of
count up and a match generate a signal period with 50% duty cycle, which
is the proportion of the time the output is high within a period. In addition,
the period of the waveform can be adjusted by changing the value of OCR0.
Thus, both Normal and CTC modes can be used to generate a waveform
with a fixed duty cycle with varying frequency. It is important to note that
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OC0

TCNT0

1 32Period

OC0 
Interrupt
Flag set

Toggle

Figure 5.21: Example timing of PWM in CTC mode.

the OC0 pin is part of a port. Therefore, the data direction for the pin must
be set to output to make signals be visible on OC0 (see Section 5.2 for a
description on how I/O pins are set for input/output).

The frequency of the waveform generated in the CTC mode, fCTC , is
controlled using the following equation:

fCTC =
clkI/O

2 · prescale · (1 +OCR0)
, (5.5)

where clkI/O is the I/O clock, prescale is the prescale factor defined in Table
5.3, and OCR0 is the value in the OCR0 register.

Note that the Normal mode can also be used to generate a waveform on
the OC0 pin. However, this is not recommended because the loaded value
is not retained as it counts up, and thus it has to be reloaded each pulse.
This is in contrast to OCR0 for CTC mode, which is loaded just once.

Fast Pulse Width Modulation (Fast PWM) Mode

The Fast PWM mode allows for generating high frequency pulse or square
waves. Before discussing the details of this mode, some explanation is in
order to understand the usefulness of this feature. PWM uses a rectangular
pulse wave whose pulse width can be modulated to vary the average value
of the waveform. This method is commonly used to drive motors, heaters,
or lights in varying speeds or intensities.

Figure 5.22 shows an example Fast PWN mode timing diagram. In this
mode, TCNT0 counts up from BOTTOM (0x00) to MAX (0xFF), then
restarts at BOTTOM. For a non-inverted PWM output , the OC0 signal is
set to 0 when TCNT0 and OCR0 match, and is set to 1 when the counter
transitions from 0xFF to 0x00. The inverse occurs using an inverted PWM
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Figure 5.22: Example timing diagram in Fast PWM mode.

output . The result is a waveform where its duty cycle can be varied by
adjusting the value of OCR0. Thus, the Fast PWM mode can be used to
generate a waveform with a fixed frequency, but whose duty cycle is variable.
Note that both Fast PWM and CTC modes can be used to generate a pulse
train. However, the CTC mode can only vary the frequency of the waveform,
not its duty cycle, and thus it cannot be used to perform PWM.

The frequency of PWM for the OC0 signal can be determined by using
the following equation:

fPWM =
clkI/O

prescale · 256
, (5.6)

where clkI/O is the I/O clock and prescale is the prescale factor defined in
Table 5.3.

5.4.5 Timer/Counter Control Register

Controlling the behavior of Timers/Counters is done with the Timer/-
Counter Control Register 0-3 (TCCR0-3). Again, since TCCR0 and 2 have
identical formats, we will only discuss how TCCR0 can be used to control
the operation of TCNT0. The same will be true for TCCR1 and 3.

TCCR0 and 2

Figure 5.23 shows the format of TCCR0. The Clock Select bits CS02, CS01,
and CS00 allow the internal frequency to be derived or scaled from the I/O
clock (clkI/O) using the prescale factor. This allows the rate at which a
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FOC0 WGM00 COM01 COM00 WGM01 CS02 CS01 CS00
7 6 5 4 3 2 1 0

TCCR0

W (0) R/W (0) R/W (0) R/W (0) R/0 (0) R/W (0) R/W (0) R/W (0)

Timer/Counter Control Register 0 (TCCR0)

Bit 7 - Force Output Compare
Bit 6, 3 - Waveform Generation Mode
Bit 5, 4 - Compare Output Mode
Bit 2:0 - Clock Select 

Figure 5.23: Timer/Counter Control Register 0.

Timer/Counter increments/decrements to be controlled. Table 5.3 shows
the eight possible choices.

Table 5.3: Clock Select bits in TCCR0

Clock Select bits in TCCR0.

CS02 CS01 CS00 Description

0 0 0 No clock source

0 0 1 clkI/O
0 1 0 clkI/O/8

0 1 1 clkI/O/32

1 0 0 clkI/O/64

1 0 1 clkI/O/128

1 1 0 clkI/O/256

1 1 1 clkI/O/1024

The different modes of operation are defined by Waveform Generation
Mode bits WGM01 and WGM00. This is shown in Table 5.4.

Table 5.4: Description of Waveform Generation Mode bits in TCCR0.

Mode WGM01 WGM00 TOP
Update of
OCR0 at

TOV0 Flag
Set on

Normal 0 0 0xFF Immediate MAX

Phase Correct PWM 0 1 0xFF TOP BOTTOM

CTC 1 0 OCR0 Immediate MAX

Fast PWM 1 1 0xFF TOP MAX

The behavior of the OC0 pin is determined by Compare Output Mode bits
COM01 and COM00 shown in Table 5.5, as well as the mode of operation.
When the COM01 and COM00 bits are both set to zeros, the OC0 pin
(which is shared with bit 4 of Port B) is disconnected from Timer/Counter0
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and operates as an ordinary port pin. When COM01 and COM00 are set
to 0 and 1, respectively, the OC0 output toggles whenever a compare match
occurs in Normal and CTC modes. When COM01 and COM00 are set to 1
and 0, respectively, the OC0 output is cleared whenever a compare match
occurs for all three modes. However, the Fast PWN mode has an addition
behavior, which is to set the OC0 output to TOP. Finally, when COM01
and COM00 are both set to ones, the OC0 output is set whenever a compare
match occurs for all three modes. In addition, the OC0 output is set to TOP
in the Fast PWM mode.

Table 5.5: Description of Compare Output Mode (COM) bits in TCCR0

COM01 COM00 Normal CTC Fast PWM

0 0 Normal port operation, OC0 disconnected

0 1 Toggle OC0 on compare match Reserved

1 0 Clear OC0 on compare match Clear OC0 on
compare match, set
OC0 at TOP
(non-inverting)

1 1 Set OC0 on compare match Set OC0 on
compare match,
clear OC0 at TOP
(inverting)

Finally, setting the Force Output Compare bit FOC0 forces an immediate
compare match, which affects the behavior of the OC0 pin according to
COM01 and COM00 bit settings, but does not set the OCF0 bit. This
feature is useful when the OC0 pin needs to be set to either 1 or 0. Note
that the FOC0 bit is only active when WGM01:00 bits are set to a non-PWM
mode (i.e., Normal and CTC modes).

TCCR1 and 3

The behavior of Timer/Counter1 is controlled by Timer Counter Control
Register 1A, 1B, and 1C (TCCR1A, TCCR1B, and TCCR1C.) These reg-
isters are shown in Figure 5.24.

TCCR1A provides similar features as TCCR0 with additional capabili-
ties. The bits COM1A1-0, COM1B1-0, and COM1C1-0 control the output
compare pins OC1A, OC1B, and OC1C, respectively. Table 5.6 shows the
meaning of these bits for Normal, CTC, and Fast PWM modes.

Table 5.7 shows the description of the Wave Generation Mode bits WGM13,
WGM12, WGM11, and WGM10, which are spread across TCCR1A and
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ICNC1 ICES1 - WGM13 WGM12 CS12 CS11 CS10
7 6 5 4 3 2 1 0

TCCR1B

COM1A1 COM1A0 COM1B1 COM1B0 COM1C1 COM1C0 WGM11 WGM10
7 6 5 4 3 2 1 0

TCCR1A

R/W (0) R/W (0) R (0) R/W (0) R/0 (0) R/W (0) R/W (0) R/W (0)

R/W (0) R/W (0) R/W (0) R/W (0) R/0 (0) R/W (0) R/W (0) R/W (0)

FOC1A FOC1B FOC1C - - - - -
7 6 5 4 3 2 1 0

TCCR1C
W (0) W (0) W (0) R (0) R (0) R (0) R (0) R (0)

Bit 7:6 - Compare Output Mode for Channel A
Bit 5:4 - Compare Output Mode for Channel B
Bit 3:2 - Compare Output Mode for Channel C
Bit 1:0 - Waveform Generation Mode bits 1:0

Bit 7 - Input Capture Noise Canceler
Bit 6 - Input Capture Edge Select
Bit 5 - Reserved
Bit 4:3 - Waveform Generation Mode bits 3:2
Bit 2:0 - Clock Select

Bit 7 - Force Output Compare for Channel A
Bit 6 - Force Output Compare for Channel B
Bit 5 - Force Output Compare for Channel C
Bit 4:0 - Reserved

Figure 5.24: Timer/Counter Control Register 1.

TCCR1B. The three basic Wave Generation Modes are 0 (Normal), 4 (CTC),
and 15 (Fast PWM). In addition, there are variations to CTC and Fast PWM
operations. For instance, Fast PWM also provides 8-bit, 9-bit, and 10-bit
resolutions, which limit the count to 0x00FF, 0x01FF, and 0x03FF, respec-
tively. Furthermore, both CTC and Fast PWM provide ICR1 as the TOP
value.

The bits CS12, CS11, and CS10 in TCCR1B are Clock Select bits for
TCNT1 and are defined in Table 5.8. The Input Capture Edge Select
(ICES1) bit chooses between rising and falling edge from the Input Cap-
ture Pin 1 (ICP1) to capture the content of TCNT1 onto ICR1. The Input
Capture Noise Canceler 1 (ICNC1) bit is used to activate the filtering of the
signal from ICP1. The filter function requires four successive equal valued
samples of the ICP1 pin for changing its output.

Finally, setting the Force Output Compare bits FOC1A, FOC1B, and
FOC1C in TCCR1C force immediate compare matches that affects the
behavior of the OC1A, OC1B, and OC1C pins according to COM1A1:0,
COM1B1:0, and COM1C1:0 bit settings, respectively. As was the case for
the FOC0 bit in TCCR0, these bits do not set the OCF1A:C bits and are
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Table 5.6: Description of Compare Output Mode (COM) bits in TCCR1

COM1A1:0
COM1B1:0
COM1C1:0

Normal CTC Fast PWM

00 Normal port operation, OC1A-C disconnected

01 Toggle OC1A-C on compare match Reserved

10 Clear OC1A-C on compare match Clear OC1A-C on
compare match, set
OC1A-C at
BOTTOM
(non-inverting)

11 Set OC1A-C on compare match Set OC1A-C on
compare match,
clear OC1A-C at
BOTTOM
(inverting)

Table 5.7: Description of Wave Generation Mode bits

Mode WGM13-10 Mode of Operation TOP Update of
OCR1A-C

TOV1 Flag
set on

0 0000 Normal 0xFFFF Immediate MAX
4 0100 CTC OCR1A Immediate MAX
5 0101 Fast PWM, 8-bit 0x00FF TOP TOP
6 0110 Fast PWM, 9-bit 0x01FF TOP TOP
7 0111 Fast PWM, 10-bit 0x03FF TOP TOP
12 1100 CTC ICR1 Immediate TOP
14 1110 Fast PWM ICR1 TOP TOP
15 1111 Fast PWM OCR1A TOP TOP

only active when WGM13:10 bits are set to a non-PWM mode (i.e., Normal
and CTC modes).

5.4.6 Assembly Program Examples Using Timers/Counters

This subsection concludes the discussion on Timers/Counters by presenting
several example programs to demonstrate how TCNT0 together with the
various modes can be used to turn on and off an LED connected to the OC0
pin.

Our first example code causes an LED to turn on for approximately half
a second. This is done by first turning on OC0 then having TCNT0 generate
a delay of 10 ms as discussed in Example 5.2, and then encapsulating this
delay in a loop that iterates 50 times. For this version, TCNT0 operates in
Normal mode, and the TOV0 flag is continually checked to see if TCNT0
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Table 5.8: Clock Select bits in TCCR1B

Clock Select bits in TCCR1B.

CS02 CS01 CS00 Description

0 0 0 No clock source

0 0 1 clkI/O
0 1 0 clkI/O/8

0 1 1 clkI/O/64

1 0 0 clkI/O/256

1 0 1 clkI/O/1024

1 1 0 External clock source on T1 pin. Clocked on falling edge

1 1 1 External clock source on T1 pin. Clocked on rising edge

rolls over. When TCNT0 rolls over 50 times, OC0 is turned off. The code
is shown below.

; AVR Assembly Code - Turn on OC0 for 500 ms

; (Normal mode, OC0 disconnected)

.INCLUDE "m128def.inc"

.DEF A = R16 ; General purpose register A

.DEF B = R17 ; General purpose register B

.ORG $0000 ; Reset and Power On interrupt

RJMP INITIALIZE ; Jump to initialization

.ORG $0046 ; End of interrupt vectors

INITIALIZE:

; Initialize stack

LDI A, high(RAMEND)

OUT SPH, A

LDI A, low(RAMEND)

OUT SPL, A

; Initialize TCNT0

SBI DDRB, PB4 ; Set bit 4 of port B (OC0) for output

LDI A, 0b00000111 ; Activate Normal mode, OC0 disconnected,

OUT TCCR0, A ; and set prescaler to 1024

MAIN:

SBI PORTB, PB4 ; Turn on OC0

RCALL WAIT_0.5sec ; Call WAIT_0.5sec subroutine

CBI PORTB, PB4 ; Turn off OC0

LOOP:
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RJMP LOOP ; Loop forever

; Subroutine to wait for 500 ms

WAIT_0.5sec:

LDI B, 50 ; Load loop count = 50

WAIT_10msec:

LDI A, 100 ; (Re)load value for delay

OUT TCNT0, A

; Wait for TCNT0 to roll over

CHECK:

IN A, TIFR ; Read in TIFR

ANDI A, 0b00000001 ; Check if TOV0 set

BREQ CKECK ; Loop if TOV0 not set

LDI A, 0b00000001 ; Otherwise, Reset TOV0

OUT TIFR, A ; Note - write 1 to reset

DEC B ; Decrement count

BRNE WAIT_10msec ; Loop if count not equal to 0

RET

The above code executes the INITIALIZE code upon reset, which sets
up the stack and the OC0 pin for output. In addition, TCNT0 is config-
ured to operate in Normal mode (i.e., WGM01=0 and WGM01=0) with the
OC0 pin disconnected from the Waveform Generator (i.e., COM01=0 and
COM00=0), and the prescaler value is set to 1024 (i.e., CS02=1, CS01=1,
and CS00=1). In the MAIN LOOP, the OC0 pin is first turned on. Afterwards,
a subroutine call is made to WAIT 0.5sec, which implements WAIT 10msec

loop. For each iteration of the loop, TCNT0 is loaded with 100 and the
TOV0 bit is continuously checked to see if it is set. When it is set, TOV0 is
reset (by writing a 1), and the loop count is decremented. After executing
the loop for 50 times, the WAIT 0.5sec subroutine returns. Finally, the OC0
pin is turned off.

In the following example code, we use the CTC mode to cause the LED
to blink by toggling the OC0 pin on and off approximately every half a
second.

; AVR Assembly Code - Manually toggle OC0 every 500 ms

; (CTC mode, OC0 disconnected)

.INCLUDE "m128def.inc"

.DEF A = R16 ; General purpose register A

.DEF B = R17 ; General purpose register B
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.ORG $0000 ; Reset and Power On interrupt

RJMP INITIALIZE ; Jump to initialization

.ORG $0046 ; End of interrupt vectors

INITIALIZE:

; Initialize stack

...

; Initialize TCNT0

SBI DDRB, PB4 ; Set pin 4 of Port B (OC0) for output (LED)

LDI A, 0b00001111 ; Activate CTC mode, OC0 disconnected,

OUT TCCR0, A ; and set prescaler to 1024

LDI A, 156 ; Set output compare value

OUT OCR0, A ;

MAIN_LOOP:

RCALL TOGGLE ; Call TOGGLE subroutine

RCALL WAIT_0.5sec ; Call WAIT_0.5sec subroutine

RJMP MAIN_LOOP ; Loop forever

; Subroutine to toggle OC0

TOGGLE:

IN A, PORTB ; Get current OC0 value

LDI B, (1 << PB4) ; Set bit to toggle

EOR A,B ; Toggle OC0

OUT PORTB, A ; Write it back

RET

; Subroutine to wait for 500 ms

WAIT_0.5sec:

LDI B, 50 ; Load loop count = 50

Wait_10msec:

LDI A, 0 ; Initialize TCNT0 to 0

OUT TCNT0, A

; Wait for TCNT0 to match with OCR0

LOOP:

IN A,TIFR ; Read in OCF0 in TIFR

ANDI A, 0b00000010 ; Check if OCF0 set

BREQ LOOP ; Loop if OCF0 not set

LDI A, 0b00000010 ; Otherwise, reset OCF0

OUT TIFR, A ; Note - write 1 to reset

DEC B ; Decrement count

BRNE WAIT_10msec ; Loop if count not equal to 0

RET

First, TCCR0 is set to the CTC mode (i.e., WGM01=1 and WGM01=0),
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which sets the OCF0 flag on compare match. In addition, OC0 is discon-
nected from the Waveform Generator so that it can be manually toggled
when a compare match occurs (i.e., COM01=0 and COM00=0). Second,
the OCR0 register is loaded with the value 156 (see Equation 5.4), which
results in delay time of 10 ms. In the MAIN LOOP, the subroutine TOGGLE is
called to read the current value of OC0, toggle it by performing an exclusive-
OR operation with a 1, and then write it back. Afterwards, a subroutine
call is made to WAIT 0.5sec, which implements the WAIT 10msec loop. In
the WAIT 0.5sec subroutine, TCNT0 is initialized to 0 for each occurrence
of 10 ms delay. Moreover, the OCF0 flag tested to see if it is set.

In the following two example codes, we use Fast PWM mode to generate
a pulse train to drive the LED. This has the effect of varying the LED’s
intensity, depending on the frequency of PWM.

The following example uses the Fast PWM mode to automatically toggle
OC0 every 8.16 ms.

; AVR Assembly code - Fast PWM mode

.INCLUDE "m128def.inc"

.DEF A = R16 ; General purpose register

.ORG $0000 ; Reset and Power On interrupt

RJMP INITIALIZE ; Jump to initialization

.ORG $0046 ; End of interrupt vectors

INITIALIZE:

; Initialize stack

...

SBI DDRB, PB4 ; Set bit 4 of port B (OC0) for output

LDI A, 0b01101111 ; Activate Fast PWM mode with toggle

OUT TCCR0, A ; (non-inverting), and set prescaler to 1024

LDI A, 128 ; Set compare value

OUT OCR0, A ;

MAIN_LOOP:

RJMP MAIN_LOOP ; Do nothing loop

During initialization, TCCR0 is set to the Fast PWM mode (i.e., WGM01=1
and WGM01=1), and clear the OC0 pin on compare match and set the
OC0 pin when TCNT0 reaches TOP value (i.e., COM01=1 and COM00=0).
Moreover, OCR0 is set to 128, which is the mid-point of TCNT0. This will
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generate a pulse train with a frequency of 122.5 Hz with a duty cycle of
50%.

In our final example, we take the Fast PWM mode version discussed
above and add the capability to adjust the duty cycle using interrupts.

; AVR Assembly code - Fast PWM mode with adjustable duty cycle

.INCLUDE "m128def.inc"

.DEF A = R16 ; General purpose register

.ORG $0000 ; Reset on Power On interrupt

RJMP INITIALIZE ; Jump to initialization

.ORG $001E ; Compare Match vector

RJMP TIM0_COMPA

.ORG $0046 ; End of interrupt vectors

INITIALIZE:

SBI DDRB, PB4 ; Set bit 4 of port B (OC0) for output

LDI A, 0b01101111 ; Activate Fast PWN mode with toggle

OUT TCCR0, A ; (non-inverting) & set prescaler to 1024

LDI A, 0b00000010 ; Enable output compare interrupt

OUT TIMSK, A

SEI ; Enable global interrupt

MAIN_LOOP:

RJMP MAIN_LOOP ; Loop and wait for for interrupts

TIM0_COMPA:

IN A, OCR0 ; Read OCR0

INC A ; Increment OCR0

OUT OCR0, A ; Write it back

RETI

In this version, an interrupt is set up to execute the TIM0 COMPA interrupt
service routine when a compare match interrupt occurs. This is done by
using the interrupt vector located at $001E, which is for the Timer/Counter0
Compare Match interrupt (see Table 5.1). The TIMO COMPA interrupt service
routine basically increments the value in OCR0. Thus, OCR0 initially starts
at 0 and increments up to 255 causing the duty cycle to start at 0% and
increase to 100%. This causes the intensity of the LED to slowly increase
within a span of 16.38 ms × 256= 4.19 sec.
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5.5 USART

Universal Synchronous/Asynchronous Receiver/Transmitter (USART) is a
highly flexible serial communications system. The USART hardware allows
a microcontroller to transmit and receive data serially to and from other
devices, such as a computer or another microcontroller. USART is supported
by many embedded I/O devices and sensors, including Bluetooth, Infrared
(IR), RFID reader, Global Positioning System (GPS), Global System for
Mobile communication (GSM), etc. In older computers, devices such as
mice, printers, and dial-up modems used USART to communicate via a
serial port using the RS-232 protocol . Serial ports have since been displaced
by Universal Serial Bus (USB); however, they are still used in many test and
measurement equipment, industrial machines, and networking equipment.

5.5.1 Serial Communications Basics

Before getting into the details of AVR’s USART capabilities, we begin with
a discussion on the basic concepts of serial communication.

A USART transmitter (Tx) takes an n-bit data and transmits the in-
dividual bits in a serial fashion. A USART receiver (Rx) re-assembles the
received bits into the original data. Each USART contains a shift register,
which is used to convert data between serial and parallel forms.

There are some issues to consider when two independent devices have to
communicate serially. First, how does the receiver know when the data being
transmitted starts and ends? Second, how fast are the bits transmitted/re-
ceived, and how do the sender and receiver agree on a transmission rate?
The answer to the first question is to encapsulate serial data into frames.
The answer to the second question depends on whether the serial commu-
nication is performed synchronously or asynchronously . The following two
subsections discuss these issues in more detail.

Serial Data Frame Format

The serial data frame format is shown in Figure 5.25. A frame contains
n-bit of data (e.g., 8-bit) with synchronization bits (start and stop bits),
and optionally a parity bit for error checking. USART accepts the following
combinations as valid frame formats:

• 1 start bit
• 5, 6, 7, 8, or 9 data bits
• none, even or odd parity bit
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0 1 2 3 4 [5] [6] [7] [8] [P] Sp1 [Sp2] (St/IDLE)(IDLE) St

St         Start bit, alway low
(n)         Data bit (0 to 8)
P          Parity bit (odd or even)
Sp        Stop bit, always high
IDLE     No transfers on the communication line (RxD or TxD).  An IDLE line must be high

Frame

Figure 5.25: Data frame format.

• 1 or 2 stop bits

Initially, the signal on the serial port is high indicating that it is idle. A
frame starts with a falling edge, which indicates the beginning of the start
(St) bit. This is followed by the least significant data bit (i.e., bit 0). Then,
the data bits, up to a total of nine, follow and end with the most significant
bit (i.e., either bit 7 or 8). If enabled, the parity (P) bit is inserted after
the data bits, and before the stop (Sp) bit(s), which can be either one (Sp1)
or two bits (Sp1 and Sp2). When the transmission of a frame completes, it
can be directly followed by a new frame, or the serial port can be set to the
idle (i.e., high) state.

The P-bit is an additional bit transmitted with the data to enhance data
integrity during transmission. With a single parity bit, a single bit error can
be detected. The parity for the data can be either even or odd. For even
parity , the parity is set to make the total number of 1’s even. For odd parity ,
the parity is set to make the total number of 1’s odd. The P-bit is calculated
by performing an exclusive-OR of all the data bits. If odd parity is used, the
result of the exclusive-OR is inverted. The relationship between the parity
bit and data bits is given as follows:

Peven = dn−1 ⊕ · · · ⊕ d2 ⊕ d1 ⊕ d0 ⊕ 0 (5.7)

Podd = dn−1 ⊕ · · · ⊕ d2 ⊕ d1 ⊕ d0 ⊕ 1

For example, if we have a data byte 0b00101101 and we want odd parity,
the parity bit is set to 1 to make the total number 1’s five, which results is
an odd number of 1’s.
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Sender Receiver

Data

Clock

(a) Synchronous.

Sender Receiver

Formatted
Data

(b) Asynchronous.

Figure 5.26: Synchronous vs. asynchronous serial communication.

Synchronous vs. Asynchronous Serial Communication

Figure 5.26 shows the basic difference between synchronous and asynchronous
modes of transmission. In synchronous mode, the sender (i.e., master) pro-
vides a clock to the receiver (i.e., slave), and this clock synchronizes the
two devices. In asynchronous mode, both sender and receiver agree on a
Baud rate (see Section 5.5.3), and the receiver automatically recovers the
transmitted clock rate by detecting the incoming signal at this agreed rate.

5.5.2 AVR’s USART

There are two identical USARTs in AVR ATmega128: USART0 and US-
ART1 . USART pins for the ATmega128 is shown in Figure 5.27. Each
USARTn has a pair of Receive Data (RxDn) and Transmit Data (TxDn)
pins, and External Clock (XCKn) pin, where n is 0 and 1 for USART0 and
USART1, respectively.

The block diagram of USARTn is shown in Fig. 5.28, which consists
of Clock Generator, Transmitter, and Receiver. The Transmitter block is
responsible for transmitting data bits serially on the TxDn pin. This is
done by writing the data to be transmitted to USARTn I/O Data Register
(UDRn), which then gets moved to a special buffer, called Transmit Shift
Register . This also frees up UDRn for the subsequent transmission. The
Transmit Shift Register shifts the data a bit at a time and adds parity bit(s)
and transmits them on the TxDn pin. The Receiver block receives the
data on the RxDn pin and checks and recovers the data onto Receive Shift
Register , and when all the data bits of a frame are properly received they
are moved to UDRn (Receive). The Clock Generator block consists of Baud
Rate Generator , which is controlled by USARTn Baud Rate Registers high
and low (UBRRnH and UBRRnL).
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USART0
Tx/Rx & 

Clock pins 

USART1
Tx/Rx pins 

USART1
Clock pin 

Figure 5.27: USART0 and USART1 pins.

5.5.3 Control and Status Registers

The functionality of each USART is defined by configuring the following:

• Synchronous vs. Asynchronous Mode
• Data Frame Format
• Baud Rate
• Transmitter and Receiver Enable
• Data Transmitted or Received Status
• Interrupts

These operations are controlled using USARTn Control and Status Register
A-C (UCSRnA-C) shown in Figure 5.29. The following discusses these
operations.

Synchronous vs. Asynchronous Mode

Table 5.9 shows the control bits for transmission mode, which is selected
using USARTn Mode Select (UMSELn) bit in UCSRnC. When UMSELn=0,
USARTn operates in asynchronous mode. If UMSELn=1, it operates in
synchronous mode.
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Figure 5.28: USART Block Diagram.

In synchronous mode, the XCKn pin shown in Figure 5.28 is used as
either clock input for the Slave device or clock output for the Master de-
vice. The USARTn Clock Polarity (UCPOLn) bit in UCRSnC selects which
XCKn clock edge is used for data sampling and which is used for data
change. When UCPOLn=0, the data will be changed at rising XCKn edge
and sampled at falling XCKn edge. If UCPOLn=1, the data will be changed
at falling XCKn edge and sampled at rising XCKn edge.

In asynchronous mode, XCKn is not used. Instead, the Clock Recovery
logic is employed to synchronize the internally generated Baud rate clock to
the incoming asynchronous serial frames on the RxDn pin. Then, the Data
Recovery logic samples the incoming bits.

Data Frame Format

The data frame format used by USARTn is set with the USARTn Character
SiZe bits 2 through 0 (UCSZn2:0), the USARTn Parity mode bits 1 and 0
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RXCn TXCn UDREn FEn DORn UPEn U2Xn MPCMn

USART Control and Status Register A (UCSRnA)

Bit 7 - USART Receive Complete
Bit 6 - USART Transmit Complete
Bit 5 - USART Data Register Empty
Bit 4 - Frame error
Bit 3 - Data OverRun
Bit 2 - Parity Error
Bit 1 - Double USART Transmission Speed
Bit 0 - Multi-Processor Communication Mode 

01234567

R (0) R/W (0) R (1) R (0) R (0) R (0) R/W (0) R/W (0)

RXCIEn TXCIEn UDRIEn RXENn TXENn UCSZn2 RXB8n TXB8n

USART Control and Status Register B (UCSRnB)

Bit 7 - RX Complete Interrupt Enable
Bit 6 - TX Complete Interrupt Enable
Bit 5 - USART Data Register Empty Interrupt Enable
Bit 4 - Receiver Enable
Bit 3 - Transmitter Enable
Bit 2 - Character Size (combine with UCSZn1:0 in UCSRnC)
Bit 1 - Receive Data Bit 8
Bit 0 - Transmit Data Bit 8

01234567

R/W (0) R (0) R/W (0)R/W (0) R/W (0) R/W (0) R/W (0) R/W (0)

- UMSELn UPMn1 UPMn0 USBSn UCSZn1 UCSZn0 UCPOLn

USART Control and Status Register C (UCSRnC)

Bit 7 - Reserved Bit
Bit 6 - USART Mode Select 
Bit 5:4 - Parity mode
Bit 3 - Stop bit select
Bit 2:1 - Character size UCSZn2:0
Bit 0 - Clock Polarity 

01234567

R/W (0) R/W (1) R/W (0)R/W (0) R/W (0) R/W (0) R/W (0) R/W (1)

Figure 5.29: USARTn Control and Status Register A, B, and C.

(UPMn1:0), and the USARTn Stop Bit Select (USBSn) bit spread across
UCSRnB and UCSRnC as shown in Figure 5.29. Both the receiver and
transmitter use the same setting, and this should not be changed during
any ongoing communication.

Table 5.10 shows the control bit settings for the data frame format. The
UCSZn2:0 bits select the number of data bits in the frame. The UPMn1:0
bits enable and set the type of parity used. The selection between one or
two stop bits is done using the USBSn bit. The extra stop bit allows for
additional receive processing time, especially at high baud rates. Note that
the receiver ignores the second stop bit; therefore, a frame error will only
be detected in the cases where the first stop bit is zero.
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Table 5.9: Control bits for transmission mode

Control bits Bit Meaning

UMSELn
0 Asynchronous mode
1 Synchronous mode

UCPOLn 0 Data changes/sampled at rising/falling XCK edge
(synchronous) 1 Data changes/sampled at falling/rising XCK edge

Table 5.10: Control bits for Data Frame Format

Control bits Bits Meaning

UCSZn2:0

0 0 0 5-bit
0 0 1 6-bit
0 1 0 7-bit
0 1 1 8-bit
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Reserved
1 1 1 9-bit

UPMn1:0
0 0 No parity
1 0 Even parity
1 1 Odd parity

USBSn
0 1 stop bit
1 2 stop bits

If a data frame contains 9 bits, Transmit Data Bit 8 (TXB8n) and
Receive Data Bit 8 (RXB8n) hold the 8th bit. For example, during trans-
mission, the last bit has to be first written to TXB8n before writing the
lower 8 bits of data to UDRn. Similarly, during reception, the last bit has
to be first read from RXB8n before reading the lower 8 bits of data from
UDRn.

Baud Rate

The rate at which data is transmitted is called the bit-rate, measured in
bits per second (bps). Baud rate refers to the rate at which symbols are
transmitted, measured in symbols per second, and includes the synchro-
nization bits, i.e., start bit and stop bit(s). For example, if 10-bit symbol is
used per 8-bit character at a Baud rate of 9600, then this equates to 9600
symbols/second × 10 bits/symbol or a bit rate of 96000 bps.

The Baud rate is controlled using the USARTn Baud Rate Register
(UBRRn) shown in Figure 5.28. The Baud Rate Generator loads the UBRR
value and decrements it. When the count reaches zero, a clock is generated
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and the UBRR value is reloaded. Moreover, the Baud rate is determined
based on the transmission mode.

For the asynchronous normal mode, the Baud rate is given by the fol-
lowing equation:

Baud Rate =
fCLK

16× (UBRR+ 1)
, (5.8)

where fCLK is the system clock frequency and 16 is the Baud rate divider.
Solving for UBRR leads to the following equation:

UBRR =
fCLK

16× (Baud Rate)
− 1 (5.9)

For example, the required value for UBRR for a Baud rate of 2,400 baud
and fCLK of 16 MHz is given by

UBRR =
16MHz

16× 2400
− 1 = 416 = 0x01A0. (5.10)

The transfer rate can also be doubled by setting the Asynchronous Dou-
ble Speed Mode (U2Xn) bit in UCSRnA, which reduces the Baud rate divider
from 16 to 8 and results in UBRR value of 832 or 0x0340.

For the synchronous mode, the Baud rate is given by the following equa-
tion:

Baud Rate =
fCLK

2× (UBRR+ 1)
(5.11)

Therefore, the UBRR value is given by

UBRR =
fCLK

2× (Baud Rate)
− 1 (5.12)

Transmitter and Receiver Enable

Transmitter and Receiver of USARTn are enabled using Receiver Enable
(RXENn) and Transmitter Enable (TXENn) bits in UCSRnB.
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Data Transmitted or Received Status

In order to transmit a sequence of characters, the transmitter has to know
whether one character has been successfully transmitted before the next
character can be transmitted. This is indicated by the USARTn Data Regis-
ter Empty (UDREn) flag in UCSRnA. If UDREn is one, the buffer is empty,
and thus it is ready to be written. Writing a character to UDRn clears the
UDREn flag. Another less common way is to monitor the USARTn Trans-
mit Complete (TXCn) flag in UCSRnA, which is set when all the bits in the
Transmit Shift Register shown in Figure 5.28 have been transmitted, and
there is no new data in UDRn (Transmit).

Table 5.11: Status bits for transmission and reception

Status bits Bit Meaning

RXCn
0 Receive incomplete
1 Receive complete

TXCn
0 Transmit incomplete
1 Transmit complete

UDREn
0 UDRn (trasnmit buffer) full
1 UDRn (transmit buffer) empty

Similarly, a reception of a new character in UDRn (Receive) sets the
USARTn Receive Complete (RXCn) flag in UCSRnA. If the Receiver is
disabled, i.e., RXENn=0, UDRn (Receive) will be flushed and consequently
the RXCn bit will become zero.

Transmit and Receive Data Buffers

The UDRn register contains USARTn Transmit Data Buffer (TXBn) and
USARTn Receive Data Buffer (RXBn). These two registers share the same
I/O address as UDRn. This is shown in Figure 5.30. TXBn will be the
destination for data written to UDRn, and data read from UDRn will be in
RXBn. TXBn, and thus UDRn, can only be written when the UDREn flag
in UCSRnA is set indicating it is empty. Data written to UDRn when the
UDREn flag is not set will be ignored by the USARTn Transmitter. When
data is written to UDRn, it will be written into Transmit Shift Register
when it is empty. Then, the data will be serially transmitted on the TxDn
pin. When data is received by the Receive Shift register, it will be written
to UDRn. UDRn, and thus TXBn, can only be read when the RXC flag in
UCSRnA is set indicating it is full.
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USARTn I/O Data Register (UDRn)
01234567

R/W (0) R/W (0) R/W (0) R/W (0) R/W (0) R/W (0) R/W (0) R/W (0)

RXBn[7:0]

TXBn[7:0]

UDRn (Read)

UDRn (Write)

Figure 5.30: USARTn I/O Data Register (UDRn)

Interrupts

Both TXCn and RXCn can also be used to generate Transmit Complete
interrupt and Receive Complete interrupt by setting TX Complete Inter-
rupt Enable (TXCIE) and RX Complete Interrupt Enable (RXCIE) bits in
UCSRnB. For USART0, Transmit Complete interrupt and Receive Com-
plete interrupt are mapped to vector numbers 21 and 19 at addresses $0028
and $0024, respectively (see Table 5.1). The corresponding interrupts for
USART1 are mapped to vector numbers 33 and 31 at addresses $0040 and
$003C, respectively (see Table 5.1). Note that TXCn and RXCn flags are
cleared when their respective interrupt service routines are called.

The same is true for the UDREn flag, which can generate a USARTn
Data Register Empty interrupt by setting USARTn Data Register Empty
Interrupt Enable (UDRIEn) in UCSRnB. UDREn is automatically set after
a reset to indicate that the Transmitter is ready.

Error Reporting

There are three flags to indicate errors that can occur during transmis-
sion/reception. This is shown in Table 5.12.

Table 5.12: Status bits for Error Reporting

Status bits Bit Meaning

DORn
0 No error
1 Data OverRun error

FEn
0 No error
1 Framing error

UPEn
0 No error
1 Parity error

The first is the Data OverRun (DORn) flag in UCSRnA, which is set
when UDRn (Receive) is full (i.e., contains two characters), there is a new



182 CHAPTER 5. AVR: PART 2 - INPUT/OUTPUT

character waiting in the Receive Shift Register, and a new start bit is de-
tected. This bit is valid until UDRn (Receive) is read.

The second is the Framing Error (FEn) bit in UCSRnA, which is set
if the next character in UDRn (Receive) had a frame error when it was
received. As mentioned before, a frame error occurs when the first stop
bit of the next character in UDRn (Receive) is zero. This bit is valid until
UDRn (Receive) is read. The FEn bit is zero when the stop bit of received
data is one.

The third is the Parity Error (UPEn) bit in UCSRnA, which is set if
the character in UDRn (Receive) had a parity error and the parity checking
was enabled, i.e., UPMn1 = 1 (see Table 5.10). This bit is valid until UDRn
(Receive) is read.

Note that all three of these bits are initialized to zeros on reset.

5.5.4 Programming Model

USART Initialization

USART has to be initialized before it can be used. The code shown below
initializes USART0 to transmit on Port E, pin 0 (i.e., TxD0) and to receive
on Port E, pin 1 (RxD0) with a Baud rate of 2,400 bps in asynchronous
mode, double data rate, and a frame format with 8 data and 2 stop bits.

; AVR Assembly Code - USART0 Initialization

.include "m128def.inc" ; Include definition file

.def mpr = r16 ; Multi-purpose register

.ORG $0000 ; Reset and Power On interrupt

rjmp INITIALIZE ; Jump to initialization

.ORG $0024 ; USART0, Rx complete interrupt

rjmp USART_Receive ; Jump to ISR

INITIALIZE:

; Initialize stack

ldi mpr, high(RAMEND)

out SPH, mpr

ldi mpr, low(RAMEND)

out SPL, mpr

; Initialize I/O Ports

ldi mpr, (1<<PE1) ; Set Port E pin 0 (RXD0) for input and

out DDRE, mpr ; Port E pin 1 (TXD0) for output
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; Initialize USART0

ldi mpr, (1<<U2X0) ; Set double data rate

out UCSR0A, mpr ;

; Set baudrate at 2400

ldi mpr, high(832) ; Load high byte of 0x0340

sts UBRR0H, mpr ; UBRR0H in extended I/O space

ldi mpr, low(832) ; Load low byte of 0x0340

out UBRR0L, mpr ;

; Set frame format: 8 data, 2 stop bits, asynchronous

ldi mpr, (0<<UMSEL0 | 1<<USBS0 | 1<<UCSZ01 | 1<<UCSZ00)

sts UCSR0C, mpr ; UCSR0C in extended I/O space

; Enable both transmitter and receiver, and receive interrupt

ldi mpr, (1<<TXEN0 | 1<<RXEN0 | 1<<RXCIE0)

out UCSR0B, mpr ;

sei ; Enable global interrupt

Upon reset, the code jumps to the label INITIALIZE to perform initial-
ization. Note that the code is set up to call the USART RECEIVE interrupt
service routine when a USART0 Receive Complete interrupt occurs. The
first part of initialization is to set up the stack. Next, the TxD0 and RxD0
pins are a part of Port E (see Figure 5.27), and thus, their directions have
to be set to output and input, respectively. This is done by setting bit 0
(PE0) and bit 1 (PE1) of DDRE to 1 and 0, respectively.

Initialization of USART0 starts by enabling the double data rate and
setting the Baud rate. Turning on the double data rate is done by setting
the U2X0 bit in UCSR0A. The Baud rate is set by loading 832 or 0x0340 on
to UBRR. The data frame format is set by writing 011 into bits UCSZ02,
UCSZ01, and UCSZ00, respectively, in UCSR0B and UCSR0C. At the same
time, asynchronous mode and two stop bits are chosen by setting UMSEL0
to 0 and USBS0 to 1 in UCSR0C. The final piece of code enables both
the transmitter and the receiver by setting bits RXEN0 and TXEN0 in
UCSR0B, and the Receive Complete interrupt is turned by setting RXCIE0
to 1 in UCSR0B. Note that UBRR0H and UCSR0C are in the extended I/O
space (see Table C.2), and thus the sts (Store direct to SRAM ) instruction
must be used. Finally, the global interrupt is enabled by setting the I-bit in
SREG using the sei instruction.
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Sending Data

The following subroutine can be used transmit one character on USART0.

; AVR Assembly Code - USART Transmit

USART_Transmit:

sbis UCSR0A, UDRE0 ; Loop until UDR0 is empty

rjmp USART_Transmit

out UDR0, r17 ; Move data to Transmit Data Buffer

ret

The sbis instruction checks bit 5 of UCSR0A (URDE0 is define as the 5th

bit in the m128def.inc include definition file) to see if UDR0 is empty. If
the URDE0 bit is set, which means TXB0 or UDR0 (Transmit) is empty,
the rjmp instruction is skipped and the data can be written to UDR0 for
transmission.

Receiving Data

The following subroutine shows the receive operation, which is called when
a Receive Complete interrupt occurs.

; AVR Assembly Code - USART Receive (interrupt driven)

USART_Receive:

push mpr ; Save mpr

in r17, UDR0 ; Get data from Receive Data Buffer

... ; Do something with data

pop mpr ; Restore mpr

reti

Note that the reti instruction is needed to return from the interrupt service
routine and reenable the global interrupt. Moreover, the above code assumes
the mpr register will be used within the interrupt service routine, and thus
it is saved to and restored from the stack.

5.6 Analog-to-Digital Converter

Under Construction!!!
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5.7 SPI Bus Protocol

Under Construction!!!

5.8 TWI

Under Construction!!!

5.9 Analog Comparator

Under Construction!!!
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Embedded C
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6.7 TekBot Programming Using Embedded C . . . 189

6.1 Introduction

As the title of this book suggests, assembly language programming is one
of the major topics of this book. However, despite the many advantages of
assembly programming, writing programs with any level of sophistication
requires a high-level programming language. Since an assembly language
is tied to a particular processor and the way it works, assembly language
programming can be difficult to master and requires you to learn another
assembly language when you change to a different microcontroller family.
For this reason, there are C compilers for microcontrollers that can, unlike
assembly, abstract away the lower-level details of what a processor does
to execute your programs. Using C, you can write software much faster,
and create programs that are much easier to understand and maintain than
assembly language programs. In addition, C works reasonably close to the
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processor, which allows programmers to generate code that requires less
memory space and runs faster than other high-level languages, such as Java.

This chapter discusses Embedded C , which adds additional functionality
to the C programming language providing portability across different em-
bedded systems. These additions include direct access to hardware (e.g.,
I/O ports), interrupt handling, and even embedding assembly code within
C. Therefore, Embedded C offers both machine-independent and machine-
dependent programming extensions, providing both the power of general-
purpose programming and a detailed interface to hardware. This chapter
assumes the audience has experience with general C programming, and is
familiar with AVR I/O features discussed in Chapter 5. Thus, the empha-
sis will be on the additional features available for programming embedded
systems.

There are several C compilers for AVR, which include CodeVisionAVR
by HP InfoTech, AVR IAR by IAR Systems, and AVR-GCC, which is the
open source software development tool for AVR microcontrollers. These
compilers basically differ on how they handle machine-dependent details,
such as I/O operations and embedding assembly into C. This chapter dis-
cusses Embedded C in the context of AVR-GCC, which is the C compiler
used by the Atmel Studio Integrated Development Environment (IDE) (see
Appendix F).

Section 6.2 provides a brief tutorial on C programming. This is followed
by a discussion of AVR I/O operations in Section 6.3. Section 6.4 dis-
cusses how to access the Program Memory, Data Memory, and EEPROM of
AVR. Programming the AVR interrupt facility is discussed in Section 6.5.
Section ?? explains the importance and correct usage of volatile in Em-
bedded C programs. Finally, Section 6.6 discusses embedding assembly into
C.

6.2 A Quick Primer on C Programming

Under Construction!!!

6.3 I/O Operations in AVR

Under Construction!!!
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6.4 Accessing Program Memory, Data Memory,
and EEPROM in AVR

Under Construction!!!

6.5 Using Interrupts in AVR

Under Construction!!!

6.6 Mixing C and Assembly

Under Construction!!!

6.7 TekBot Programming Using Embedded C

Under Construction!!!
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Chapter 7

Digital Components

Contents

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . 191
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7.6 Memory . . . . . . . . . . . . . . . . . . . . . . . . 207

7.7 Register File . . . . . . . . . . . . . . . . . . . . . 211

7.8 Arithmetic and Logic Unit and Address Adder 213

7.1 Introduction

Digital components are fundamental building blocks for any digital systems.
They include decoders/encoders, multiplexers, counters, registers, memo-
ries, and Arithmetic and Logic Units (ALUs), and are implemented using
basic logic gates, such as NAND, NOR, NOT, etc., and memory elements.
Understanding how digital components work is important because microar-
chitecture implementation, or implementation of any digital systems for that
matter, involves modular design using these basic components. Therefore,
this chapter reviews some basic concepts in digital system design and how
they relate to design of microarchitectures.

Figure 7.1 shows the basic microarchitecture of the AVR processor, which
will be discussed in detail in Chapter 8. It consists of memories for pro-
gram and data, multiplexers (MUXA-MUXJ), registers (PC, IR, DMAR,
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Figure 7.1: Digital components in the AVR microarchitecture.

and NPC), Register File, adders (+ and Address Adder), Arithmetic and
Logic Unit (ALU), Concatenation (‖) Unit, Zero Fill (zf) Unit, Sign Ex-
tension (se) Unit, and several logic components that are specialized for the
AVR microarchitecture, such as Alignment Unit and Register Address Logic.
There are also some hidden components, mainly decoders that are integrated
into memories and Register File.

In the following sections, we discuss the functionality and implementa-
tion of decoders, multiplexers, registers, register file, and memory, and the
roles they play in a microarchitecture. The specialized components will be
discussed later in Chapter 8, and a detailed discussion of Arithmetic and
Logic Units (ALUs) will be provided in Chapter 9.
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Figure 7.2: 2-to-1 MUX.

7.2 Multiplexers

A multiplexer (MUX) is a digital switch that connects data from one of 2k

inputs to its output using k select input lines. In the AVR microarchitec-
ture, MUXs are used to choose among multiple input sources. For example,
MUXJ in Figure 7.1 allows the PC register to latch the address from either
the Address Adder or the Address Incrementer (+).

Figure 7.2 shows the logic symbol, function table, K-map, and logic
diagram for a 2-to-1 MUX. The input S is used to select from either input
I0 or I1, which then appears on the output O.

In microarchitecture design, a MUX is typically used to select one of
the 2k inputs consisting not just a single bit but n bits. Figure 7.3 shows
an n-bit 2-to-1 MUX, which simply consists of n 2-to-1 MUXs connected in
parallel.

The logic equations for 2-to-1, 4-to-1, and 8-to-1 MUXs are shown below
and Figure 7.4 shows the logic symbol and the logic diagram for 4-to-1 MUX:

2-to-1 MUX: O = S’I0 + SI1

4-to-1 MUX: O = S1’S0’I0 + S1’S0I1 + S1S0’I2 + S1S0I3

8-to-1 MUX: O = S2’S1’S0’I0 + S2’S1’S0I1 + S2’S1S0’I2 + S2’S1S0I3
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Figure 7.3: n-bit 2-to-1 Multiplexer.
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Figure 7.4: Example of 4-to-1 MUX.

+ S2S1’S0’I4 + S2S1’S0I5 + S2S1S0’I6 + S2S1S0I7

As can be seen from the above logic equations and Figure 7.4, the number of
inputs for AND and OR gates grows as k grows. For example, the number of
inputs to the AND gate and the OR gate for 8-to-1 MUX are four and eight,
respectively. This causes a problem where the switching delay increases with
k, referred to as the fan-in problem. The limit on fan-in (i.e., 2k inputs) is
typically four.

In order to mitigate the fan-in problem, larger MUXs can built by cascad-
ing smaller MUXs. Figure 7.5 shows two different examples of implementing
an 8-to-1 MUX using a combination of 2-to-1 and 4-to-1 MUXs. As can be
seen, the difference between the two implementations is the way the input
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Figure 7.5: Cascaded MUXs.

select lines S2S1S0 are used to control the MUXs. For the implementation
on the left, the most significant input select bit (i.e., S2) selects either the
first or second half of the inputs, and the input select bits S2S0 select one
of the four inputs for each of the two 4-to-1 MUXs. In contrast, the imple-
mentation on the right uses the two most significant input select bits (i.e.,
S2S1) to select one of the four two-bit inputs, and the input select bit S0 is
used to select one of the two inputs for each of the four 2-to-1 MUXs.

A demultiplexer (DEMUX) takes a single input and forwards it to one
of its 2k outputs based on the k-bit pattern on the select lines. DEMUX
is complementary to MUX, and both are often used to merge and separate
information.

7.3 Decoders

In general, a decoder is a multiple-input, multiple-output logic circuit that
converts coded inputs to coded outputs, where inputs and outputs are dif-
ferent. There are many types of decoders. In Chapter 8, we will see an
example decoder called instruction decoder that decodes the opcode part of
instructions and generates control signals to control the operations of the
datapath. In this chapter, we discuss a more common decoder circuit called
a binary decoder , which is a k-input, 2k-output logic circuit that provides
exactly one output to be 1 (or 0) and all the rest of the outputs are 0s (or
1s). The one output that is logically 1 is the output corresponding to the
input pattern that it is expected to detect. Binary decoders are commonly
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Input Output
E S1 S0 O3 O2 O1 O0

1 0 0 0 0 0 1
1 0 1 0 0 1 0
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1 1 1 1 0 0 0

(a) Function table. S1 
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S0 

(b) Logic diagram.

Figure 7.6: 2-to-4 decoder.

used to select one of many components (i.e., words/registers) in memories
and register files.

Figure 7.6 shows the function table and logic diagram for a 2-to-4 de-
coder. As can be seen from the truth table, the output Oi is 1 only when the
input S1S0 corresponds to the binary representation of i. This decoder also
has an enable (E) input to enable or disable the operation of the decoder.
Thus, when E is 0, outputs are 0s.

As mentioned before, binary decoders are used as a front-end to memo-
ries and register files. Figure 7.7 illustrates how a 4-to-16 decoder is used as
an address select logic for a memory containing 16 1-bit words. The 4-bit
address input A3A2A1A0 is used to enable the corresponding memory or
RAM cell. We will discuss more on reading or writing from/to a selected
memory cell in Section 7.6.1.

7.4 Memory Elements

A storage or memory element can maintain a binary state indefinitely until
directed by an input signal to switch states. The most basic storage elements
are latches, from which flip-flops can be constructed. Although the terms
latch and flip-flop are used interchangeably, a latch refers to a sequential
device that continuously watches its input and can change its output at any
time, while a flip-flop refers to a sequential device that samples its inputs
and changes its output only when a clocking signal is asserted.
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Figure 7.7: Decoder front-end for memories.

7.4.1 Latches

Figure 7.8 shows the Set-Reset (S-R) latch and its function table. The
S-R latch is the most fundamental latch and is constructed from two cross-
coupled NOR gates. The circuit has two inputs, S and R, and two outputs,
Q and Q. Figure 7.9 illustrates the operations of the S-R latch. If S and R
are both 0s, the circuit’s feedback loop retains one of the two logic states,
i.e., Q = 0 or Q = 1. A logic 1 can be written to S-R latch by setting S = 1
and R = 0. Conversely, a logic 0 can be written to S-R latch by setting
S = 0 and R = 1. If both S and R are set to 1s, both outputs will be 0s,
which violates the requirement that the outputs be the complement of each
other. Moreover, when inputs are simultaneously returned to 0s, the circuit
may go into the metastable state where the output oscillates between 0 and
1. In normal operations, these problems are avoided by guaranteeing that
that both inputs are not 1s.

Alternatively, an S-R latch can also be constructed using NAND gates.
Figure 7.10 shows an S-R latch based on NAND gates. As can be seen, the
main difference between the two implementations is that their inputs are
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Figure 7.8: S-R latch.
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Figure 7.9: Operations of S-R latch.

flipped. Thus, the NAND implementation is also referred to as S-R latch,
where set and reset inputs are active low.

The operation of the basic S-R latch can be modified by providing an
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(b) Function table.

Figure 7.10: S-R latch.

additional control input that determines when the state of the latch can
be changed. Figure 7.11 shows an S-R latch with enable. The two NAND
gates together with the control signal (C) determine whether or not set-
reset operations are activated. This allows an S-R latch to be written to
only when a certain condition is true.

S
Q

Q
R

C

(a) Circuit using S-R latch (i.e., NAND im-
plementation).

S R C Q
0 0 1 No change
0 1 1 0
1 0 1 1
1 1 1 Not allowed
× × 0 No change

(b) Truth table.

S Q

Q

C

R

(c) Logic symbol.

Figure 7.11: S-R latch with enable.
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(a) Circuit using S-R latch.
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(b) Truth table.

D Q

QC

(c) Logic symbol.

Figure 7.12: D latch with enable.

As discussed before, inputs to an S-R latch cannot be both 1s at the
same time, otherwise unpredictable behavior occurs. This can be avoided
using a D latch with enable shown in Figure 7.12, where an inverter is added
to generate complements of S and R inputs. The control input (labeled C
in the Figure) is active high and serves as either an enable or a clock signal.

7.4.2 Flip-Flops

A flip-flop contains a latch and its state is triggered by a change in the
control input.

Edge-Triggered D Flip-Flop

Unlike level-triggered flip-flops, which we saw in Figures 7.11 and 7.12, edge-
triggered flip-flops change their states only at the falling or rising edge of
a controlling clock signal. This feature is critical in synchronous circuits,
where output transitions are synchronized with a clock edge.

Figure 7.13 shows a negative edge-triggered D flip-flop. An edge-triggered
flip-flop in general contains two latches referred to as master and slave. The
slave section is basically the same as the master section except that it is
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(a) Circuit using D latches.

D CLK Q
0 ↓ 0
1 ↓ 1
× 0 No change
× 1 No change

(b) Function table.

D Q

QCLK

(c) Logic symbol.

Figure 7.13: Negative-edge triggered D-FF.

clocked on the inverted clock pulse and is controlled by the outputs of the
master section rather than by the external inputs.

The master latch is open or enabled and follows the input D when CLK
is 1. When CLK transitions to 0, the master latch is disabled and its output
appears on the input of the slave latch. The slave latch is enabled all the
while CLK is 0, but changes only at the beginning of this interval since the
master latch is disabled and does not change during the rest of the interval.

The logic symbol contains a triangle and a circle on the CLK input to
indicate that this is negative and edge-trigger, respectively.

Figure 7.14 illustrates the functional behavior of a negative-edge-triggered
D flip-flop. The clock periods t and t+ 1 indicate when the signal X (which
can be 0 or 1) is applied to the input D and when X appears at the output
Q, respectively. Consider the timing just before the clock signal transitions
from 1 to 0 (indicated by ‘↓’). Since the clock signal is 1, the Master D
flip-flop latches the signal X, while the Slave D Flip-flop is disabled and
thus holds the previous output, i.e., Q(t-1). When the clock signal transi-
tions from 1 to 0, the Master D flip-flop becomes disabled, while the Slave
D flip-flop becomes enabled. This causes the signal X at the output of the
Master D flip-flop to be latched onto the Slave D flip-flop, and at the same
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Figure 7.14: Functional behavior of a negative-edge-triggered D flip-flop.

time prevents any new signal from being latched onto the Master flip-flop.
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(b) Function table.

D Q
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(c) Logic symbol.

Figure 7.15: Positive-edge triggered D-FF.

Figure 7.15 shows a positive-edge triggered D flip-flop. Its operations
are similar to a negative edge-triggered flip-flop except the CLK input is
inverted so that all the signals transition during the rising edge of CLK.
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Figure 7.16: Positive-edge triggered D flip-flop with high enable.

7.4.3 Edge-Triggered D Flip-Flop with Enable

One problem with D flip-flops discussed previously is that the system clock,
which supplies a continuous train of clock pulses, will cause the output Q will
change if input D changes. This is not necessarily a desirable characteristic,
and instead a designer may need to control when data should be latched onto
a register. This is accomplished by adding an enable (E) input. Figure 7.16
shows the circuit design of a positive-edge-triggered D flip-flop with high
enable. This circuit contains a 2-to-1 MUX in front of the input to the D
flip-flop to select either the external input D or the flip-flop’s current output
Q. Thus, unless the enable signal E is asserted, the flip-flop will maintain
the last value stored.

7.5 Registers

A register consists of a set of commonly clocked D flip-flops together with
additional logic to determine the new data to be latched onto the flip-flops.
Registers in a microarchitecture are used to temporarily hold and separate
information among various parts of the datapath. The role of registers can
be as simple as holding a set of bits or as complicated as performing a variety
of functions.

7.5.1 n-bit Register

Figure 7.17 shows a clocked n-bit register with parallel load capability. Sim-
ilar to Figure 7.16, each input to the D flip-flop has a 2-to-1 MUX to select
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Figure 7.17: Register with load enable.

either the external input Di or the flip-flop’s current output Qi.

7.5.2 Shift Registers

A shift register is an n-bit register with the capability to shifts its data
one bit left (down) or right (up) with each tick of the clock. Figure 7.18
shows a serial-in, serial-out 4-bit shift register . Shift registers are useful in
many applications. One of its common use is to convert between serial and
parallel interfaces. Shift registers can also be used as simple delay circuits.
Several bi-directional shift registers could also be connected in parallel for
a hardware implementation of a stack. In microprocessors, shift registers
are used to handle data processing. Most assembly languages provide “shift
left” and “shift right” instructions that perform multiply by two and divide
by two, respectively, with each shift. These instructions can also be used
together with the carry bit (C-bit) to test bits in a register.
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Figure 7.18: 4-bit shift register.

Sometimes it is also necessary to have parallel load as well as shift capa-
bilities. Such a circuit can be implemented by combining the shift registers
in Figure 7.18 with n-bit register with parallel load capability in Figure 7.17.
Figure 7.19 shows the logic diagram and function table for a 4-bit bidirec-
tional shift register with parallel load . Input to each flip-flop is a 4-to-1 MUX
that chooses among (1) serial-in right, (2) the current stored value (i.e., Q),
(3) input data (i.e., D), or (4) serial-in left.

7.6 Memory

The AVR microarchitecture has two memories: Program Memory and Data
Memory. Although the technologies used in the two memories are different
(Program Memory is based on flash memory, while Data Memory is based on
static RAM), their fundamental operations are similar. Thus, we will not
distinguish the two and instead focus on the structure of memories using
basic memory elements and registers discussed in Sections 7.4 and 7.5.
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Control Input Next State
Function S1 S0 Q3 Q2 Q1 Q0

Hold 0 0 Q3 Q2 Q1 Q0

Shift right 0 1 R IN Q3 Q2 Q1

Shift left 1 0 Q2 Q1 Q0 L IN
Load 1 1 D3 D2 D1 D0

(b) Function table.

Figure 7.19: Bidirectional shift register with parallel load.
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Figure 7.20: Logic diagram of a SRAM cell.

7.6.1 Static RAM (SRAM)

Static RAM (SRAM) is basically made up of D flip-flops and is used in
registers and Data Memory of the AVR processor.

SRAM Cell

Figure 7.20 shows the functional behavior of a SRAM cell. The storage
element in each cell is a D flip-flop controlled by an equivalent NOR gate
with Select (Sel) and Write (WR) inputs and a tri-state buffer controlled by
Sel. Note that Sel and WR are low-enabled meaning when both signals are
low the control is enabled. In order to read the bit stored in the cell, Sel is
set 0 to enable the tri-state buffer. In order to write a bit into the cell, both
Sel and WR signals are set to 1s. It is also important to note that when Sel
is high Dout is in high-impedance state, which causes the cell to be isolated
from the rest of the SRAM structure.

SRAM Structure

A complete static RAM structure is constructed using an array of SRAM
cells with additional logic. Figure 7.21 shows the structure of a 2n by b-bit
SRAM. As discussed in Section 7.3, the front-end of the SRAM structure
contains a n-to-2n decoder that accepts an n-bit address and selects one of
the 2n outputs. This enables one of the rows or words to be accessed.

The control signals for the SRAM structure consists of Write Enable
(WE), Chip Select (CS), and Output Enable (OE). When WE is asserted,
the input data Din is written to the selected word. OE enables the tri-state
buffer allowing data to be read from the SRAM. Finally, the CS input can
be thought of as the main switch for the SRAM and provides flexibility in
controlling multiple SRAM structures. Thus, either WE or OE together
with CS are asserted to make the SRAM operational.
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Figure 7.21: 2n by b-bit SRAM structure.
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Figure 7.22: Read operation.

Figure 7.22 illustrates a read operation. A read is performed by providing
an address of the word to be read to the decoder front-end, which then
enables the selected word or row (via Row Select signal), and setting OE
and CS to 0s. This enables the tri-state buffers allowing the word to appear
on the output Dout.

Figure 7.23 illustrates a write operation. A write operation is also per-
formed by providing both the word and the address of the word to be written
and setting CS to 0. This selects the corresponding word (via Row Select
signal) and asserts the WR inputs, which causes input data X to be written
to the selected row of SRAM cells.

SRAM versus Dynamic RAM

In contrast to SRAMs, dynamic RAMs (DRAMs) have a much higher ca-
pacity. This is because each DRAM cell consists of a capacitor and a tran-
sistor compared to six transistors for a SRAM cell, called 6T-cell. However,
DRAMs are much slower than SRAMs for several reasons. First, because
a DRAM has more memory words, its decoder front end is much larger
resulting in more delay. Second, the charge stored in the capacitor, which
represents logic 1, leaks over time, and therefore, all the cell have to be peri-
odically refreshed. Finally, each read operation discharges the charge stored
in the cell, and thus, has to be followed by a write to restore the original
value in the cell.

In general, microcontrollers, such as AVR, do not use DRAMs due to
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Figure 7.23: Write operation.

their slow speed and minimal memory requirements. However, high-speed
processors in high-end mobile devices, e.g., smartphones, and PCs use a
combination of SRAMs and DRAMs to implement a hierarchy of memory.
For example, these processors have registers and caches (Level-1 and Level-
2) implemented as SRAMs, and then have main memory based on DRAMs.

The discussion of the memory hierarchy is beyond the scope of this
book, and interested readers are referred to a number of excellent books on
computer architectures, such as ‘Computer Organization and Design: The
Hardware/Software Interface’ by Patterson and Hennessy (Elsevier Morgan
Kaufmann, 2009).

7.6.2 Building Bigger and Wider Memories

Memory often needs to be expanded to accommodate larger applications
and data. For example, ATmega128 AVR processor has 4,966×8-bit internal
SRAM, and is expandable to 64K×8-bits using external memory. Obviously,
a simple solution is to provide a single SRAM chip that matches the required
size. However, a large memory can also be built using smaller memories.

Figure 7.24 shows an example of a 256K×8-bit memory using four 64K×8-
bit memories. The basic idea is each of four memories represents a sub-
address space of the entire memory address space of 64K by 8-bit words.
The key then is the use of Chip Select (CS) available on each memory chip
to activate only a certain part of the memory of interest. This is done by
having feeding the least significant 16 bits of the address lines (i.e., A15−A0)
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Figure 7.24: Implementing 256K×8-bit RAM using 64K×8-bit RAMs.

in to all the memories, and then have two most significant bits (i.e., A17 and
A16) become the input for a 2-to-4 decoder that selects one of the four mem-
ory chips. This way, the lower 16 bits of the address lines select the same
word for each of the four memories, but only one memory chip is enabled.

Figure 7.25 shows an example of a 256K×16-bit memory using two
256K×8-bit memories. All the address lines (i.e., A17, A16, · · · , A0) is fed to
both of the memories. The upper byte of the data (D15−D8) is fed into the
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Figure 7.25: Implementing 256K×16-bit RAM using 256K×8-bit RAMs.

data input of the left memory, while the lower byte of the data (D7 −D0)
is fed into the data input of the right memory.

7.7 Register File

A register file consists of a set of registers that are used to stage data be-
tween memory and Arithmetic Logic Unit (ALU) on the microarchitecture.
An instruction set architecture (ISA) of a processor defines a set of registers,
referred to as General Purpose Registers (GPRs), which can be specified
directly within the instruction to define operands to be involved in the op-
eration. A register file can simply be thought of as a small, fast memory.
However, a register file in a microarchitecture is designed to be multiple-read
port, multiple-write port, which allows one or more words to be read and one
or more words to be written. For example, in the AVR processor, address
registers X, Y, and Z each consists of a pair GPRs that need to be either read
or written at the same time.

Figure 7.26 shows the internal structure of the 128-entry, two read-port,
two write-port Register File. The read operation is performed by providing
7-bit register identifiers rA and rB, which controls MUX A and MUX B, to
read the two registers at the same time. The write operation is bit more
involved and requires three inputs: 7-bit register identifiers wA and wB,
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Figure 7.26: Internal structure of the 2 read-port, 2 write-port register file.

data inA and inB, and write signals RF wA and RF wB. Decoders A and B
assert only one of their outputs based on wA and wB. These signals control
whether inA or inB is applied to the input of each register entry using tri-
state buffers. Note that both tri-state buffers cannot be enabled at the same
time. This situation does not occur in AVR because the pair of registers
being accessed will never be the same. Finally, the signals asserted from
the decoders together with RF wA and RF wB determine whether or not
registers latch their inputs.
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7.8 Arithmetic and Logic Unit and Address Adder

Address Adder is a dedicated adder for generating the target address for PC-
relative branches, direct jumps, and indirect jumps. ALU is the workhorse of
the microarchitecture. The design of an ALU, which is based on an adder, is
a huge topic and requires an entire chapter on its own. A detailed discussion
on the ALU design is provided in Chapter 9.
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Atmel’s AVR 8-bit
Microcontroller:
Part 3 - Microarchitecture
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8.1 Microarchitecture

The term microarchitecture (sometimes abbreviated to µarch) refers to the
way a given instruction set architecture (ISA) is implemented in a processor.
A microarchitecture consists of a datapath and a control unit. A datapath
is a collection of basic digital components (see Chapter 7), such as registers,
memories, Arithmetic and Logic Unit (ALU), multiplexers, etc., that are
interconnected by buses to perform data transfer and processing operations.
A Control Unit (CU), on the other hand, is a logic block that determines
the sequence of data transfer or processing operations to be performed by

217



218 CHAPTER 8. AVR: PART 3 - MICROARCHITECTURE

the datapath. An ISA influences many aspects of how a microarchitecture
is implemented. Moreover, a given ISA can be implemented with different
microarchitectures based on the design requirements or shifts in technology.

This chapter presents a microarchitecture design based on the AVR ISA
discussed in Chapter 4, referred to as pseudo-AVR microarchitecture. The
objectives of this chapter are to (1) understand the basic components needed
and how they are interconnected to implement a datapath to perform data
transfer and processing operations, and (2) design a Control Unit to pro-
vide appropriate signals to the various components to control the operations
within the datapath.

You may be wondering why we are discussing microarchitecture design
when most of you will probably never design a processor. There are several
reasons why the concepts presented in this chapter are important. First,
there is intellectual merit in learning about a piece of technology that rev-
olutionized the way we live, work, and play, and yet most of us know very
little about it. Second, knowing the inner workings of a processor allows
a better understanding of how the overall computer system works. For ex-
ample, few people may design processors but many people design hardware
systems that contain processors, e.g., embedded systems. Third, knowing
how processors work makes you a better programmer. Finally, some of you
may actually design processors. Typically, the development of a new pro-
cessor requires a large number of people working on different aspects of a
processor design, including validation and verification, and compiler design.
And there is a good chance that you will be involved in some part of this
intricate process.

8.2 Instruction Format

Before discussing the details of a datapath design, we need to first under-
stand the different AVR instruction formats and the information that needs
to be extracted or decoded. Figure 8.1 shows the seven most common AVR
instruction formats. The symbol ‘-’ represents an opcode bit that will vary
depending on the instruction being encoded. We will consider these opcode
bits during the design of a control unit in Sec. 8.6. There are also several
other special instruction formats, which will not be discussed here.

Figure 8.1(a) shows the two-operand format , where the 5-bit register
identifiers d dddd (Rd) and r rrrr (Rr) specify the left (or first) and right (or
second) source operands, respectively. Both Rd and Rr fields can specify any
one of the 32 General Purpose Registers (GPRs). Since this is a 2-address
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Figure 8.1: AVR instruction formats.

instruction format (see Chapter 2), the register identifier Rd also specifies the
destination register. This format is used to encode any binary operations
involving two registers, e.g., ADD (Add two registers), CP (Compare), MOV

(Copy register), and AND (Logical AND registers).

Instead of having both source operands in registers, one of the operands
can be an immediate or a constant value encoded in the instruction format.
This type of format, referred to as the immediate format , is shown in Figure
8.1(b). The 8-bit KKKK KKKK (K) field specifies an 8-bit unsigned value
as the second operand. The dddd (Rd) field for this instruction format has
an implied ‘1’ appended to the left of the most significant bit, and thus is
equivalent to 1dddd. This means that only the upper 16 registers (R31-R16)
can be specified as the destination. Examples of instructions that follow this
format are LDI (Load immediate), ANDI (Logical AND register and constant),
and ORI (Logical OR register and constant).

Figure 8.1(c) shows the I/O format , where the 6-bit I/O register iden-
tifier AA AAAA (A) field specifies one of the 64 I/O registers. There are two
instructions that use this format, IN (In port) and OUT (Out port). The 5-bit
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d dddd (Rd) field specifies either the source register for the OUT instruction
or the destination register for the IN instruction.

Unary operations that only require one source register are specified using
the one-operand format shown in Figure 8.1(d). These instructions include
INC (Increment), DEC (Decrement), COM (One’s complement), LSR (Logical
shift right), ROR (Rotate right through carry), etc. The 5-bit d dddd (Rd)
field specifies any one of the 32 GPRs. The one-operand format is also used
by LD (Load indirect) and ST (Store indirect) instructions as well as their
auto-increment/decrement variations, where d dddd represents Rd for LD and
Rr for ST.

Figure 8.1(e) shows the displacement format , which is used in conjunc-
tion with load and store instructions. The two instructions that use the dis-
placement format are LDD (Load indirect with displacement) and STD (Store
indirect with displacement). The 6-bit q qq qqq (q) field represents an un-
signed offset (0 ≤ q ≤ 63), which is added to one of the address registers
(ARs) Y or Z, but not X. The 5-bit d dddd (Rd) field specifies any one of the 32
GPRs and can serve as either the source or destination register depending
on whether the instruction is STD or LDD, respectively.

There are two PC-relative formats, 12-bit and 7-bit. These are shown
in Figure 8.1(f). The signed 12-bit or 7-bit displacement field kkkk kkkk kkkk

(k12) or kk kkkk k (k7) is added to PC+1 to generate a branch target address
with a range of -2048≤ k≤ 2047 with the 12-bit displacement or -64≤ k≤ 63
with the 7-bit displacement. The 12-bit PC-relative format is used by RJMP

(Relative jump) and RCALL (Relative subroutine call) instructions. On the
other hand, the 7-bit PC-relative format is used exclusively by conditional
branch instructions, such as BREQ (Branch if equal), BRLT (Branch if less
than), and BRGE (Branch if greater or equal).

Figure 8.1(g) shows the direct format , which is used only by 32-bit in-
structions CALL (Direct subroutine call) and JMP (Direct jump). The 16-bit
target address field kkkk kkkk kkkk kkkk (k16), which is the second 16-bit por-
tion of a 32-bit instruction, is the same size as the PC. This means that the
target address of this direct format instruction can be anywhere within the
64K-word Program Memory address space. The additional 6-bit k kkkk k

field in the first 16 bits of the instruction format allows the Program Mem-
ory address space to be expanded by a factor of 26. For AVR processors
with only 64K words of Program Memory, these bits are all zeros.
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Figure 8.2: Basic 2-stage datapath

8.3 Components in the Basic Datapath

Figure 8.2 shows the basic 2-stage datapath for the pseudo-AVR microarchi-
tecture consisting of Fetch and Execute stages. The Fetch stage is respon-
sible for reading the instruction to be executed from the Program Memory.
The Execute stage decodes the fetched instruction and performs microop-
erations required for the instruction. The basic datapath shown in Figure
8.2 executes instructions that require either one or two cycles in the Exe-
cute stage depending on their complexity. In Section 8.5, we will discuss an
enhanced datapath that can execute more complex AVR instructions.
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8.3.1 Special-Purpose Registers

There are several special-purpose registers that serve as buffers for the Fetch
and Execute stages. They are
• Fetch stage

– Program Counter (PC)
• Execute stage

– Instruction Register (IR)
– Data Memory Address Register (DMAR)
– Next PC (NPC)

The Program Counter (PC), also referred to as the Instruction Pointer ,
contains the address of the instruction in Program Memory to be fetched and
executed. The PC is incremented (PC+1) during the Fetch stage and latched
at the end of the clock cycle so that instructions are fetched sequentially from
the Program Memory. Certain instructions, such as branches, jumps, and
subroutine calls/returns, interrupt the sequencing by updating the PC with
a target address.

The Instruction Register (IR) holds an instruction fetched during the
Fetch stage. The IR latches an instruction at the end of the Fetch cycle and
holds its information during one or more Execute cycles.

The Data Memory Address Register (DMAR) holds an address based
on the contents of the X-, Y-, or Z-register, and is used to access the Data
Memory.

The Next PC (NPC) register holds either PC+1 to be added with a dis-
placement k7 or k12 to implement PC-relative branches, or k16 to implement
direct jumps.

8.3.2 Program and Data Memories

Figure 8.3 shows the Program Memory and Data Memory. The operations
of the two memories are fundamentally similar (see Section 7.6). The main
difference is that the Program Memory holds 16-bit instructions, whereas
the Data Memory holds 8-bit data. Both memories are controlled by read
enable signals: PM read for the Program Memory and DM read for the Data
Memory. The Data Memory also has the write enable signal DM write.

8.3.3 Sign-Extension and Zero-Fill Units

Sign-extension is required whenever the number of bits used to represent a
signed value needs to match an input of a component. For example, PC-
relative displacement kk kkkk k (k7) has to match the number of bits required
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by the 16-bit Address Adder shown in Figure 8.2. Figure 8.4 shows a sign-
extension (se) unit. As shown in Figure 8.4(a), the se unit takes an n-bit
number as input and simply duplicates the sign (i.e., MSB) to generate
an m-bit number. This allows an n-bit signed number to become an m-
bit signed number. For example, 00101112, which represents 23 in decimal,
sign-extended to 16 bits becomes 00000000000101112. The number 11010012

represents -23 in decimal, which when sign extended to 16 bits becomes
11111111111010012. Figure 8.4(b) shows the sign-extension requirement for
12-bit PC-relative displacement k12 (see Section 8.3.5 for an explanation of
12-bit PC-relative displacement k12).

Similar to sign-extension, zero-fill is needed whenever the number of bits
used to represent an unsigned value needs to match with the number of bits
required by a component. For example, the unsigned displacement q qq qqq

(q) used in displacement format instructions has to match the number of
bits required by the 16-bit Address Adder. Figure 8.5 shows the zero-fill
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(zf) unit. As shown in Figure 8.5(a), a zf unit takes an n-bit number as
input and simply pads zeros and generates an m-bit number. This allows an
n-bit unsigned number to become an m-bit unsigned number. For example,
1010012, which represents 41 in decimal, when zero-filled to 16 bits becomes
00000000001010012. Figure 8.5(b) shows the zero-fill requirement for 6-bit
displacement q (see Section 8.3.5 for an explanation of 6-bit displacement
q).

8.3.4 ALU

The 8-bit Arithmetic and Logic Unit (ALU) shown in Figure 8.6 is the
workhorse of the microarchitecture. It takes two 8-bit inputs and performs
an operation defined by the 4-bit control signals ALU f. The ALU can also
handle instructions that require only one operand, such as NEG (Two’s com-
plement), INC (Increment), and DEC (Decrement). Table 8.1 shows all the
operations provided by the ALU. Note that the operations in Table 8.1 are



8.3. COMPONENTS IN THE BASIC DATAPATH 225

Table 8.1: Arithmetic and Logic Operations for the 8-bit ALU.

Operation Description ALU f

Arithmetic Operations

Result = A + B Add 0000

Result = A + B + C Add with carry (C) 0001

Result = A + B̄ + 1 Subtract 0010

Result = B̄ + 1 Negate 0011

Result = A + 1 Increment A 0100

Result = A− 1 Decrement A 0101

Result = A Move A 0110

Result = B Move B 0111

Logic Operations

Result = A ∧B AND 1000

Result = A ∨B OR 1001

Result = A⊕B Exclusive-OR (EOR) 1010

Result = B̄ Complement 1011

Result = B − 1 Decrement B 1100

sufficient to handle virtually all AVR instructions requiring arithmetic and
logic operations. The only exception is the multiplication operation.

A detailed discussion on the design of an ALU is provided in Chapter 9.

8.3.5 Alignment Unit

Figure 8.7 shows the Alignment Unit , which extracts the various fields from
different instruction formats needed by the Execute stage. These fields con-
sist of the following:

• Rr - 5-bit source register identifier indicated by bits r rrrr.
• Rd - 5-bit destination register identifier indicated by either bits d dddd

or dddd. In the case of dddd, MSB is assumed to be 1 and thus equiv-
alent to 1 dddd.
• K - 8-bit constant value indicated by bits KKKK KKKK.
• q - 6-bit displacement indicated by bits q qq qqq.
• k7 or k12 - Either 7-bit or 12-bit PC-relative displacement indicated

by bits kk kkkk k or kkkk kkkk kkkk, respectively.
• A - 6-bit I/O register address indicated by bits AA AAAA.

The fields A, Rd, and Rr are fed to the Register Address Logic (RAL) so
that 5-bit source/destination register identifiers and 6-bit I/O addresses can
be converted to 7-bit addresses to read/write from/to the Register File. The
functionality of RAL is more involved and a detailed discussion is deferred
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until Section 8.6.3. The K field provides an immediate value as the second
operand to the ALU. The q and k fields, after zero-filled and sign-extended,
respectively, are fed to the 16-bit Address Adder as a displacement to an
address register (either Y- or Z-register) and PC+1, respectively.

8.3.6 Register File

In AVR, 32 GPRs and 64 I/O registers are mapped to the first 96 memory
locations in the Data Memory, and they can be accessed using load and store
as well as IN and OUT instructions. These registers are also implemented
as a 96-entry two read-port, two write-port Register File (RF) shown in
Figure 8.8.

As the name suggests, this register file allows two registers to be either
read or written at the same time (see Chapter 7.7). Reading from the
Register File is achieved by providing 7-bit source register identifiers to rA

and rB and the corresponding register contents become available on outA

and outB, respectively. Writing an 8-bit result to the Register File occurs
by providing 7-bit destination register identifier to wB and the data to be
written to inB, and asserting the write control signal RF wB. Writing a 16-bit
result occurs by providing a pair of 7-bit destination register identifiers Rd+1

and Rd to wA and wB, respectively, and the upper and lower bytes of the
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data to inA and inB, respectively, and asserting both RF wA and RF wB.

8.3.7 Address Adder

Figure 8.9 shows the 16-bit Address Adder , which is a dedicated adder for
generating the target addresses for PC-relative branches, direct jumps, and
indirect jumps, and effective addresses for operands using the X-, Y-, or
Z-register. Table 8.2 shows all the operations performed by the Address
Adder.

Table 8.2: Operations for the 16-bit Address Adder.

Operation Description Adder f

Result = A + B Add 00

Result = A + 1 Increment 01

Result = A− 1 Decrement 10

Result = A Move A 11
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There are several possible address calculations. A move operation (i.e.,
Move A) simply passes the address on input A to the output. This operation
does not require the second input (i.e., input B) to the Address Adder (see
Section 9). Add operations on addresses consist of PC+1 added with either
the 7-bit (k7) or 12-bit displacement (k12) (i.e., PC-relative branches and
jumps) and either Y- or Z-register added with the 6-bit displacement (q) (e.g.,
LDD and STD. Increment and decrement operations can also be performed on
any one of the address registers.

8.3.8 Multiplexers

As discussed in Section 7.2, a Multiplexer allows one of its multiple inputs to
be selected onto its output. There are eight multiplexers in the basic data-
path, and together they control how data transfer operations are performed
within the datapath.

MUXA is an 8-bit 2-to-1 multiplexer that chooses between the 8-bit
content of a register from the outB port of the Register File and the 8-bit
constant K, and directs it to input B of the ALU. This allows arithmetic and
logic operations to be performed with Rd and either Rr (e.g., ADD Rd, Rr)
or an immediate value (e.g., ORI Rd, K).

MUXB together with MUXC , which are both 8-bit 2-to-1 multiplexers,
allow the output from either the ALU or the Data Memory to appear on the
lower write port (inB) of the Register File. The value can then be written to
the Register File by providing the register identifier Rd on wB and asserting
RF wB. In addition, both the upper and lower bytes of the Address Adder
output can be written at the same time to the Register File (with MUXC
used to select the lower byte), based on the register identifiers Rd+1 and Rd

on wA and wB, respectively, and asserting both RF wA and RF wB signals.

MUXF is a 16-bit 2-to-1 multiplexer that selects either 6-bit q zero-filled
to 16 bits (zf q) or 7-/12-bit displacement k sign-extended to 16 bits (se k).
The 6-bit displacement will be added to either Y- or Z-register to generate
an effective address for an operand in Data Memory, while the 7- or 12-bit
displacement will be added to PC+1 to generate a branch target address.
MUXG is a 16-bit 2-to-1 multiplexer that selects an address from either the
NPC (i.e., PC+1 or k16) or an address register (AR), which will then be either
added with a displacement (i.e., zf q or se k) or simply passed through the
Address Adder to generate a target address (i.e., k16 or Z).

MUXH is a 16-bit 2-to-1 multiplexer that selects either an address reg-
ister concatenated from a pair of 8-bit registers (AR) or an address register
concatenated from a pair of 8-bit registers and then modified by the Ad-
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Figure 8.10: Fetch and Execute stages.

dress Adder (-AR, AR+, or AR+q). These addresses are latched to DMAR
and then used to access the Data Memory in the subsequent cycle.

MUXJ is a 16-bit 2-to-1 multiplexer that chooses between PC+1 and
a 16-bit target address generated from the Address Adder, which can be
PC+1+se k, k16, or Z.

Finally, MUXK is a 16-bit 2-to-1 multiplexer that chooses between PC+1

and 16-bit target address k16 for direct jumps.

8.4 Multi-cycle Implementation

Figure 8.10 shows the general operations of the Fetch and Execute stages.
The Fetch stage fetches an instruction from the Program Memory and for-
wards it to the Execute stage. The Execute stage decodes the instruction
and spends one or more cycles in this stage to execute the instruction. De-
pending on the type of instruction, the number of cycles required in the
Execute stage can be anywhere between one to three cycles. Some instruc-
tions even require part of their Execute cycles to be performed in the Fetch
stage. The number of Execute cycles required for each AVR instruction is
defined in Appendix A.

Our discussion of the Fetch and Execute stages in this section is based on
a multi-cycle implementation as shown in Figure 8.11, where the instruction
cycles, each consisting of a Fetch and one or more Execute cycles, are exe-
cuted sequentially. The discussion of a pipeline implementation, where the
instruction cycles are partially overlapped, will be discussed in Section 8.8.
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8.4.1 Fetch Stage

In the Fetch stage, the current instruction pointed to by PC is fetched from
the Program Memory and latched onto IR. In addition, PC is incremented
(i.e., PC+1) and latched onto PC as well as the NPC register. PC+1 points
to either the next instruction or a target address for 32-bit direct jump (JMP)
and subroutine call (CALL) instructions. On the other hand, NPC is used
by the Execute stage to determine target addresses for PC-relative jump,
branch, and subroutine call instructions.

Table 8.3 formally defines the micro-operation performed in the Fetch
(IF) stage. Figure 8.12 illustrates the data transfer operations in the Fetch
stage. The data transfer operation IR←M[PC] indicates that the content of
the memory location pointed to by PC, i.e., M[PC], is latched onto IR at the
end of the cycle. At this point, we will not distinguish between accessing
Program Memory versus Data Memory, since using PC to access memory
automatically implies Program Memory. In addition to fetching the current
instruction, the data transfer operation PC←PC+1 indicates that the PC
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Table 8.3: Micro-operations for the Fetch Stage

Stage Micro-operation

IF IR ← M[PC], PC ← PC+1, NPC ← PC+1

Table 8.4: Micro-operations for Arithmetic and Logic Instructions

Arithmetic and Logic Instructions

Stage
Micro-operation

Binary Immediate Unary

EX Rd ← Rd op Rr Rd ← Rd op K Rd ← op Rd

is incremented to point to either the next instruction to be fetched and
executed or a target address for 32-bit instructions. PC+1 is re-latched onto
the PC at the end of the cycle, which is achieved by selecting input 0 of
MUXJ. At the same time, PC+1 is latched onto NPC, i.e., NPC←PC+1, by
selecting input 0 of MUXK.

8.4.2 Execute Stage

The micro-operations performed by the Execute stage depends on the fetched
instructions, which can be subdivided into the following three categories:

• Arithmetic and Logic,
• Data Transfer, and
• Branch and Jump.

Instructions in each category utilize similar parts of the datapath. The
instructions discussed in this section require either 1 or 2 Execute cycles.
Section 8.5 will discuss more complex instructions requiring 2 or 3 Execute
cycles.

Arithmetic and Logic Instructions

There are three different formats for arithmetic and logic instructions:

• Rd op Rr

• Rd op K

• op Rd

where op represents an arithmetic or logic operation (see Table 8.1). Table
8.4 shows the micro-operations for the Execute (EX) stage for arithmetic
and logic instructions.
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Figure 8.13 shows the portion of the datapath that performs arithmetic
and logic operations. For instructions involving two registers, such as ADD

and SUB, both source operands are obtained from the Register File based on
register identifiers Rd and Rr. Instructions involving immediate (or constant)
values, such as ORI and SUBI, are provided from the 8-bit K-field in the
instruction format. As can be seen from Figure 8.13, MUXA selects either
a register or an immediate value as the second operand. Instructions such
as INC, NEG, CLR, etc., do not require a second source operand.

For all three formats, the ALU performs an operation based on op and
the result becomes available on the lower write-port (i.e., inB) of the Register
File by appropriately selecting the inputs for MUXB and MUXC, which then
becomes latched onto the destination register based on Rd at the end of the
clock cycle. With the exception of a few instructions that involve 16-bit
operands, i.e., ADIW (Add immediate to word) and SBIW (Subtract immediate
from word), and operations that generate 16-bit results, e.g., MUL (Multiply
unsigned), most of the arithmetic and logic instructions complete in a single
Execute cycle (see Table A.1).
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Figure 8.14: The portion of the datapath for 1-cycle 8-bit Data transfer.

Data Transfer Instructions

Most data transfer instructions require either one or two Execute cycles
depending on their type and whether data is transferred between registers
or between a register and the Data Memory.

Instructions that require a single Execute cycle consist of

• MOV Rd, Rr

• IN Rd, A

• OUT A, Rr

• MOVW Rd, Rr

where A represents an I/O register in the 64 I/O register address space
(see Figure 4.3). Table 8.5 summarizes the micro-operations for these four
instructions.

Table 8.5: Micro-operations for Move and I/O Instructions

Move and I/O Instructions

Stage
Micro-operations

Move 8-bit In Out Move 16-bit

EX Rd ← Rr Rd ← A A ← Rr Rd+1:Rd ← Rr+1:Rr
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Figure 8.15: The portion of the datapath for 1-cycle 16-bit Data transfer.

Figure 8.14 shows the portion of the datapath that performs single-cycle
8-bit data transfers, i.e., MOV. Although the path is similar to those used by
arithmetic and logic instructions (see Figure 8.13), only the content of one
source register defined by Rr is passed through the ALU without modifying
its content. This unaltered value becomes available on the lower write-port
inB, which is then latched onto the Register File based on the destination
register identifier Rd available at wB at the end of the clock cycle.

In contrast to MOV, MOVW transfers 16-bit data, which is achieved by
concatenating a pair of registers defined by Rr+1 and Rr. The part of the
datapath utilized by MOVW is shown in Figure 8.15. The MOVW instruction only
specifies Rd and Rr, from which the Register Address Logic automatically
generates Rd+1 and Rr+1. Note that Rd+1 or Rr+1 indicates that a register
identifier, not the content of a register, is incremented by one. For example,
when Rr is specified as R26, the concatenated register pair R27:R26 is moved.
The register pair Rr+1 and Rr are then written back to the Register File
based on the destination register identifiers Rd+1 and Rd, respectively. Note
that these two paths for the register pair come from the 16-bit path from
the Address Adder that are split into upper and lower 8 bits.

IN and OUT instructions are similar to a single-cycle 8-bit transfer ex-
cept that data transfers are performed between a GPR and an I/O register,
which are both contained in the 96-entry Register File. Figures 8.16(a) and
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Figure 8.16: Part of the datapath utilized by IN and OUT instructions.
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8.16(b) show the part of the datapath utilized by IN and OUT instructions,
respectively. For the IN instruction, 32 is added to 6-bit I/O register identi-
fier A and then zero filled to generate a 7-bit address, which is then used to
read the Register File. The value read from an I/O register is then routed
and written to the Register File based on Rd. For the OUT instruction, the
content of Rr is read from the Register File and written back to the Register
File location defined by A+32. Note that there are no separate register iden-
tifiers for Rd and Rr in the instruction format (see Figure 8.1(c)). Therefore,
the Rd field defines the destination register for IN and the source register for
OUT

Data transfer instructions that require two execute cycles are load and
store instructions. Table 8.6 shows the sequence of micro-operations for
these instructions, where AR represents an address register X, Y, or Z.

Table 8.6: Micro-operations for Load and Store Instructions

Load and Store Instructions

Stage
Micro-operations

Normal Displacement Pre-Decrement Post-Increment

EX1
DMAR ← AR DMAR ← AR+q DMAR ← AR-1, DMAR ← AR,

AR ← AR-1 AR ← AR+1

EX2
Loads Stores

Rd ← M[DMAR] M[DMAR] ← Rr

In the first Execute cycle (EX1), which micro-operation is performed
depends on the addressing mode. Figure 8.17 shows the operation for normal
register-indirect loads and stores, e.g., LD Rd, X and ST X, Rr, where the
high and low bytes of an address register (ARh and ARl), which could be X-, Y-
, or Z-register, are read from the Register File and concatenated to generate
a 16-bit address (i.e., ARh:ARl or simply AR). This address is moved through
the Address Adder without modifying the content and then it is latched onto
DMAR, which will be used to access the Data Memory in the subsequent
cycle(s). Note that the path from the output of the concatenate unit (||)
to the 0-input of MUXH could also be used. However, the specific purpose
of this path is to implement post-increment, which will be discussed shortly
(see Figure 8.19(b)), and thus is not used for the normal register-indirect
addressing mode.

Figure 8.18 shows EX1 of register indirect with displacement . The high
and low bytes of an AR read from the Register File are concatenated and
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Figure 8.17: EX1 of register indirect for loads and stores.
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added with zero-filled 6-bit displacement q. Then, AR+q is latched onto
DMAR.

Figure 8.19 shows EX1 of register indirect with pre-decrement and post-
increment. Figure 8.19(a) shows the data transfer operations for register
indirect with pre-decrement . The high and low bytes of an AR read from
the Register File are concatenated and then decremented using the Address
Adder. Then, AR-1 is latched onto DMAR, and at the same time it is written
back to the Register File. This is done by directing the high and low bytes of
the decremented address, i.e., AR-1(h) and AR-1(l), to the write ports inA and
inB. Figure 8.19(b) shows the data transfer operations for register indirect
with post-increment . The AR read from the register file is latched on to
DMAR using the path from the output of the concatenate unit (||) to the
0-input of MUXH. At the same time, AR is incremented using the Address
Adder and written back to the Register File.

In EX2, the operand is read from the Data Memory and latched onto the
register specified by Rd for loads, and the operand specified by Rr is written
to the Data Memory for stores. The data transfer operations for EX2 for
load and store are shown in Figures 8.20(a) and 8.20(b), respectively.

Branch and Jump Instructions

There are two types of control transfer instructions: branches and jumps.
The major difference between these two types of instructions is that branch
instructions are conditional, while jump instructions are unconditional. A
conditional branch evaluates a condition code or flag, e.g., Z, N, V, or S
flag, and if the condition is true the control flow is transferred to the target
address. Another difference is that branches uses PC-relative addressing
while jumps can use either PC-relative addressing or direct addressing. PC-
relative addressing uses 16-bit instruction format but the range is limited.
On the other hand, absolute addressing allows for a much larger range but
requires 32-bit instruction format. Table 8.7 shows the micro-operations for
AVR’s branch and jump instructions.relocatable.

Figure 8.21 shows the portion of the datapath used by conditional and
unconditional branch instructions. In EX1, either the 12-bit or 7-bit dis-
placement k is sign-extended to 16 bits and added to the content of NPC,
which is PC+1. The 7-bit displacement k7 is used exclusively by condi-
tional branch instructions (e.g., BREQ, BRLT, BRGE, etc.), while the 12-bit
displacement k12 is used by relative jump and call instructions (i.e., RJMP
and RCALL). The resulting address PC+1+se k7 or PC+1+se k12, known as
the branch target address, becomes available at the input of PC to be either
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Figure 8.19: EX1 for register indirect with pre-decrement and post-
increment for loads and stores.
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Figure 8.20: EX2 for loads and stores.
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Table 8.7: Branch and Jump Instructions

Branch and Jump Instructions

Stage
Micro-operations

Branches Jumps

Conditional Unconditional Direct Indirect

EX1 If (flag) then PC ← NPC+se k7 PC ← NPC+se k12 NPC ← M[PC] PC ← Z

EX2 PC ← NPC
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Figure 8.21: EX1 of PC-relative branch instruction.

conditionally or unconditionally latched at the end of the clock cycle.

Figure 8.22 shows the portion of the datapath affected by direct jump
instructions, which consist of JMP and CALL. For now, we will concentrate on
JMP since CALL involves more complex operations. JMP is a 32-bit instruction
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Figure 8.22: Micro-operations for direct jump instructions.
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Figure 8.23: EX1 for indirect jump instruction.

where the second 16-bit of the instruction, k16, represents the target address
of the jump. Therefore, unlike 16-bit instructions, the second half of the
instruction has to be fetched again from the Program Memory in the Fetch
stage and latched onto the NPC register during EX1. This can be thought of
simply as fetching the target address instead of fetching the next instruction.
In EX2, the target address in NPC is made available to the input of the PC
register via the Address Adder to be latched at the end of the clock cycle.

Figure 8.23 shows the portions of the datapath affected by the indirect
jump (IJMP) instruction. In EX1, the high and low bytes of the address
register Z (i.e., Zh and Zl) are read from the Register File and concatenated
to generate a 16-bit target address. The resulting address is available at the
input of PC via the Address Adder to be latched at the end of the clock
cycle.
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Figure 8.24: Enhanced 2-stage microarchitecture

8.5 Execution of More Complex Instructions

The basic datapath discussed thus far is capable of implementing many of
the AVR instructions. However, some of the more complex AVR instructions
require additional functionalities not available in the basic datapath. Figure
8.24 shows the enhanced datapath that handles more complex instructions.

In the Fetch stage, the main difference between the basic datapath shown
in Figure 8.10 and the enhanced datapath is that the latter has four addi-
tional special-purpose registers.

The Return Address Register (RAR) latches the return address for a
subroutine call, which is either PC+1 for PC-relative (i.e., RCALL k12) and
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Table 8.8: Operations of the Increment/Decrement Unit.

Operation Description Inc Dec

SP+1 Increment 0

SP-1 Decrement 1

indirect subroutine (ICALL) calls and PC+2 for the direct subroutine call
(CALL k16). You may wonder why RAR is needed when it appears that
NPC already latches PC+1 or PC+2. The reason is that NPC can either
hold PC+1 (or PC+2 in case of direct jumps) or k16. If k16 is latched onto
NPC for the 32-bit direct subroutine call (i.e., CALL k16), the return address
of the subroutine call, i.e., PC+2, will be lost. Thus, RAR allows a return
address of a direct subroutine call to be pushed onto the stack in the Execute
stage. RAR consists of RARh and RARl representing the high and low bytes
of the return address, respectively, which can be selected separately using
MUXI. The write-port of the Data Memory (i.e., Data In) is preceded by
MUXD to select between RARh/RARl and an operand from the Register
File.

The Stack Pointer (SP) points to the top of the stack and is required
by instructions that manipulate the stack. Note that high and low bytes
of SP (i.e., SPH and SPL) are mapped to locations $3E and $3D in the 64
I/O registers’ address space, and thus they can also be accessed from the
Register File. However, there are several reasons why stack manipulations
require SP to be treated as a special register together with the Incremen-
t/Decrement Unit (±1) to meet the clock cycle requirements of the AVR
instruction set. First, subroutine call instructions require the address in the
SP to be provided directly to the Data Memory rather than through DMAR.
Second, the ICALL instruction requires accessing SP and Z registers at the
same time. Third, one instruction in particular, RCALL k12, requires the
calculation of PC-relative target address and the decrementing of the SP to
occur at the same time. These situations can only be handled properly if SP
is implemented as a separate register with a dedicated increment/decrement
capability. In order to handle the SP, 2-to-1 MUXE has been added to the
address-port of the Data Memory (i.e., Addr). Finally, the Increment/Decre-
ment Unit is controlled by the Inc Dec signal based on Table 8.8.

The Program Memory Address Register (PMAR) provides addresses for
constants stored in the Program Memory using MUXL. These addresses
are stored in the Z-register, which is used exclusively by LPM (Load pro-
gram memory) instructions. The Memory Data Register (MDR) latches a
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Table 8.9: Micro-operations for the Fetch Stage

Stage Micro-operations

IF IR ← M[PC], PC ← PC+1, NPC ← PC+1, RAR ← PC+1

constant accessed from the Program Memory, which together with MUXC
expanded to a 3-to-1 multiplexer allow it to be written to the Register File
in the Execute stage. Note that 8-bit constants are read from the Program
Memory using addresses that are shifted left by one bit. Thus, the least sig-
nificant bit of the address will select between first (left) and second (right)
constant within an instruction word, which is then latched onto MDR.

In addition to the four new special-purpose registers, there are some
other minor improvements made in the enhanced datapath. The PC is
separated into PCh and PCl representing the high and low bytes of the PC,
respectively. Finally, the inclusion of DEMUX allows a return address of a
subroutine call to be popped from the stack and latched onto PC one byte
at a time.

These enhancements allow complex instructions, such as stack operations
(PUSH and POP), subroutine calls and return (CALL, RCALL, ICALL, and RET),
and load program memory (LPM), to be implemented. In Section 8.6, we
will discuss how one of these complex instructions, CALL (Direct subroutine
call), can be implemented on the enhanced datapath.

The micro-operation for the Fetch stage for the enhanced datapath is
shown in Table 8.9, which is similar to Table 8.3 but requires one additional
data transfer operation of latching PC+1 onto RAR.

8.6 Control Unit Design

As we saw in Section 8.1, a microarchitecture consists of two major com-
ponents: datapath and Control Unit. The discussion up to now has been
on the datapath, which performs micro-operations using data transfer op-
erations. On the other hand, the Control Unit (CU) provides signals that
activate various components within the datapath to perform the specified
micro-operations. The Control Unit also generates signals for sequencing
the set of micro-operations required to implement an instruction.

This section discusses the implementation of a Control Unit for a multi-
cycle implementation of the pseudo-AVR Microarchitecture. In order to
illustrate the design of the control unit, we will base our discussion on a
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small subset of AVR instructions. Table 8.10 shows descriptions of the
instructions covered by the Control Unit.

Table 8.10: AVR Instructions for Control Unit Design

Representative AVR Instructions for Control Unit Design

Category Mnemonics Description Operation Flags

ALU
ADD Rd, Rr Add two Registers Rd← Rd + Rr Z,C,N,V,H,S
ORI Rd, K Logical OR Register &

Constant
Rd← Rd ∨ K Z,N,V,S

Data
Transfer

LD Rd, Y Load Indirect Rd ← M[Y] None
ST Y, Rr Store Indirect M[Y] ← Rr None

Branch
BREQ k Branch if Equal if (Z=1) then PC←PC+1+k None
CALL k Direct Subroutine call PC←k, STACK←PC+2 None

8.6.1 Opcode Encoding

The Control Unit is responsible for decoding instructions and providing ap-
propriate set of control signals to the various components of the datapath.
In order to understand the instruction decoding process, we need to first
understand how opcodes are encoded. Figure 8.25 shows the encoding of
opcodes for instructions in Table 8.10 (see Figure E.4 for a complete en-
coding of all the AVR instructions). There are four groups of instructions:
Group A, Group B, Group C, and Group D. Group A consists of ALU
operations involving two source registers and some of the data transfer in-
structions. Group B consists of ALU instructions with a source register and
an immediate value. Group C encodes the largest number of instructions
that consists of data transfer, control transfer, bit test and set, as well as
other miscellaneous instructions. Group D consists of conditional branch
and relative jump and call instructions.

As can be seen from Figure 8.25, these four groups of instructions are
identified by the two most significant bits (bits 15-14), i.e., 00 (Group A),
01 (Group B), 10 (Group C), and 11 (Group D). For Group A, the next 4
bits (bits 13-10) determine the different instructions within this group. For
Group B, the next two bits (bits 13-12) determine the encoded instructions.
Similarly, bits 13-12 for Group C determine the four different types of in-
structions within this group. Each type of instructions defined by 01, 10,
or 11, and the next three bits (bits 11-9) further subdivide each type into
different instructions. Note that for the instructions covered in Table 8.10,
only 01 for bits 13-12 is listed. Furthermore, for some instructions, addi-
tional bits define different operations for similar instructions. For example,
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Figure 8.25: Opcode encoding for instructions in Table 8.10.

the LD instruction has indirect addressing mode as well as indirect with pre-
decrement and post-increment capabilities. These are defined by bit 1 and
bit 0 indicated by “−” and “+”, respectively, where 1 in these bit positions
enable the pre-decrement and post-increment capability. Note that both
bits 1 and 0 cannot be set at the same time. Furthermore, bits 3 and 2
(“aa”) define one of the addresses registers X, Y, or Z (i.e., 11 for X-register,
10 for Y-register, and 00 for Z-register). The same applies to Group D. Bits
13-12 define different types of instructions within this group, and then addi-
tional bits define each instruction. For example, all the conditional branch
instructions are defined by 1100 and 1101 in bits 13-10, and bits 2-0 define
which condition is used to determine the outcome of the branch.

8.6.2 Control and Alignment Unit

Figure 8.26 shows the Control and Alignment Unit (CAU), which is a combi-
nation of the Control Unit and the Alignment Unit discussed in Section 8.3.5,
and all the control signals. The control signals ALU f, Adder f, and Inc Dec

are defined in Tables 8.1, 8.2, and 8.8, respectively. The special-purpose
registers IR, PC, NPC, and SP are enabled using control signals of the form
xx en, where xx represents the name of the special-purpose register (e.g.,
NPC en). PMAR, MDR, and DMAR do not require enable signals and thus
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Figure 8.26: Control signals for the enhanced AVR datapath.
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are simply latched with the clock. In addition, the control signal NPC en is
used to enable both RAR and NPC. Note that there are three way to latch
an address onto PC. The first method is to latch the entire 16-bit address
by asserting PC en. The second method is to latch the upper byte of the PC
using PCh en. The last method is to latch the lower byte of the PC using
PCl en. The latter two methods are used to latch the return address of a
subroutine call a byte at a time. Therefore, unless the instruction being ex-
ecuted is RET (Subroutine return), PCh en and PCl en are both not asserted
(i.e., set to 0’s). Moreover, only one of the three control signals (PC en,
PCh en, or PCl en) can be asserted at a time. The multiplexers are controlled
using the control signals of the form Mx, where x represents the name of a
multiplexer. Note that with the exception of MUXC, all the multiplexers
are 2-to-1requiring only a single bit control signal. MUXC is 3-to-1 and thus
requires 2 bits of control signals. Finally, as the name suggests, the DEMUX

control signal controls the DEMUX.

There are two parts to the design of the CAU. First, a set of control
signals need to be generated for each cycle or stage of an instruction exe-
cution. Second, the sequence control needs to be defined for the series of
micro-operations required to execute instructions. These two requirements
are met by implementing the CAU as a finite state machine (FSM).

The following discusses the requirements for generating the set of control
signals for the fetch and execute cycles. Then, Section 8.6.4 will present the
requirements for the sequence control.

Fetch Cycle

The Fetch cycle is the same for all instructions and is controlled by the
following signals: MJ, MK, ML, PM read, and PM write. Since the discussion
of the Fetch cycle does not include writing to the Program Memory, PM write

signal will be ignored. In addition, the PM read signal will also be ignored
since the Program Memory will be read every cycle but its content will be
latched onto the IR and NPC registers only when the IR en and NPC en,
respectively, are asserted. For example, an instruction fetched from the
Program Memory is latched onto IR only when IR en is asserted (i.e., set
to 1) together with the clock. The NPC en signal also controls the latching
of the RAR register. All other registers, i.e., DMAR and MDR, are simply
latched with the clock.

Figure 8.27 shows the control signals needed to fetch an instruction.
MUXL selects PC as its input and allows the current instruction pointed to
by the PC to be read from the Program Memory. Asserting IR en latches the
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Figure 8.27: Control signals for the Fetch stage.

instruction (i.e., M[PC]) onto IR at the end of the clock cycle. At the same
time, PC is incremented by one to point to either the next instruction or
the second 16-bit of a 32-bit instruction, which is then latched onto PC by
selecting the 0-input of MUXJ and asserting PC en. The IR is enabled to be
latched only during the Fetch cycle since the fetched instruction dictates the
operations to be performed during one or more Execute cycles. The PC is
enabled during every Fetch cycle, and during some Execute cycles involving
32-bit instructions. Either PC+1 or PC+2 is latched onto RAR as well as
NPC by selecting the 0-input of MUXK and asserting NPC en. Again, NPC
and RAR are enabled only during the Fetch cycle, and some Execute cycles
involving 32-bit instructions.

Meanwhile, all the control signals for the Execute stage can be “don’t
cares” as long as the Register File and Data Memory are not modified. This
is achieved by setting DM w=0 for the Data Memory and RF wA=0 and
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Figure 8.28: Control signals required in EX1 for ADD Rd,Rr instruction.

RF wB=0 for the Register File.

Execute Cycle

As mentioned before, control signals required in the Execute (EX) stage
depend on the instruction being executed.

Figure 8.28 shows the control signals required for the ADD instruction.
The register identifiers Rd and Rr from the instruction are decoded by the
Register Address Logic to read the two source operands from the Register
File. MUXA is set to 1 to accept the Register File content specified by Rr.
The ALU receives the two source operands and performs an add operation
defined by the control signal ALU f = 0000 (see Table 8.1). The result of the
operation is then routed to the lower input (i.e., inB) of the Register File via
input-0 of MUXB and input-0 of MUXC. Finally, the control signal RF wB=1
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Figure 8.29: Control signals required in EX1 for ORI Rd,K instruction.

allows the result to be written to the Register File at that end of the clock
cycle. All the other control signals for the Execute stage can be “don’t
cares”, except for DM w and RF wA, which have to be set to 0 to prevent
the Data Memory and the Register File from being updated with unrelated
or incorrect data. In addition, the control signals PC en and SP en in the
Fetch stage are all set to 0 to prevent these registers from being updated
with invalid information. This is crucial because PC points to the next
instruction (i.e., PC+1) and SP points to the top of the stack. Therefore,
modifying these contents will be detrimental. In contrast, IR en and NPC en

can all be “don’t cares” because EX1 is the only execute cycle for ADD and
whatever information latched to these registers at the end of the cycle will
not be used and the fetch cycle will start all over again. MUXs and DEMUX
in the Fetch stage can also be “don’t cares” since PC is not updated.

Figure 8.29 shows the control signals required in EX1 for the ORI in-
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Figure 8.30: Control signals required in EX1 for BREQ k instruction.

struction. As can be seen, the required control signals are almost identical
to the ADD instruction because ORI utilizes similar parts of the datapath.
The only difference is that MUXA is set to 0 to select the 8-bit constant K,
and the ALU performs a logical OR operation by setting the control signal
ALU f to 1001 (see Table 8.1).

Figure 8.30 shows the control signals required in EX1 for the BREQ in-
struction. When the control signal Adder f = 00 is given (see Table 8.2),
the Address Adder adds the content of NPC (i.e., PC+1) latched during the
Fetch stage and the sign-extended 7-bit k value to generate a PC-relative
target address for the branch instruction. If the Z-flag is set, then PC en

is set to latch the branch target address onto PC. Otherwise, PC is not
latched, i.e., PC en=0.

Figure 8.31 shows the control signals required for LD and ST instructions
in EX1, which are common for both instructions. In this example, the upper
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Figure 8.31: Control signals required in EX1 for LD Rd,Y and ST Y,Rr

instructions.

and lower parts of the Address Register (which in this case is the Y-register)
are simultaneously fetched from the Register File, concatenated, and fed to
the Address Adder by selecting the input-1 of MUXG. The control signal
Adder f = 11 causes the Address Adder to simply pass the content of the Y-
register to the output, which then becomes available to the input of DMAR
by setting MUXH to 1. Meanwhile, control signals DM w, RF wA, and RF wB

are all set to zeros to prevent the Data Memory and the Register File from
being updated. Similarly, PC en and IR en are also set to zeros to prevent
the contents of PC and IR from being overwritten. Control signals for RAR
and NPC as well as all the other MUXs (as well as DEMUX) are “don’t
cares”.

Figure 8.32 shows the data transfer operations in EX2 for LD and ST

instructions. For both of these instructions, MUXE is set to 1 so that the
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Figure 8.32: Control signals required in EX2 for LD Rd, Y and ST Y, Rr

instructions.
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effective address latched onto DMAR during EX1 can be used to access the
Data Memory. For LD, the Data Memory is read by setting control signals
DM r = 1 and DM w = 0, and the operand (i.e., M[Y]) is routed back to the
lower write port (i.e., inB) of the Register File via MUXB and MUXC. The
operand is written back to the Register File at the end of the clock cycle by
setting RF wB to 1. For ST, the operand Rr to be written to the Data Memory
is read from the Register File and provided as input to the Data Memory
by setting the control signal for MUXD to 1, and then written by setting
DM w to 1 and DM r to 0. All other control signals can be “don’t cares”,
except for RF wA, RF wB, IR en, PC en, and SP en, which are all zeros. Note
that Rd from the CAU to the Register Address Logic serves as the register
identifier for both LD and ST since these instructions use the one-operand
format shown in Figure 8.1(d).

Table 8.11 shows the sequence of micro-operations for CALL k. Fig-
ure 8.33 shows the control signals required for CALL. Since CALL is a 32-bit
instruction, only the first 16-bit of the instruction has been latched onto IR
during the Fetch cycle. Thus, the second 16-bit of the instruction, which
represents the target address of CALL, needs to be fetched from the Program
Memory and latched onto NPC. This is achieved by setting MUXL to ac-
cept input-0, MUXK to accept input-1, and asserting NPC en. At the same
time, PC is incremented again (i.e., PC+2) so that it points to instruction
following the CALL instruction, or the return address of the subroutine call,
and latched onto RAR. Again, except for IR en, RF wA, RF wB, DM w, and
SP en, all other control signals can be “don’t cares”, including PC en since
the PC will be overwritten with the target address of CALL in EX3.

Table 8.11: Direct Subroutine Call.

Direct Subroutine Call

Stage Micro-operations

EX1 NPC ← M[PC], RAR ← PC+1

EX2 M[SP] ← RARl, SP ← SP-1

EX3 M[SP] ← RARh, SP ← SP-1, PC ← NPC

In EX2, there are two major operations. First, the low-byte of the return
address (RARl) is pushed onto the stack. Second, the Stack Pointer (SP)
is decremented so that the high byte of the return address (RARh) can be
pushed onto the stack in EX3. The first operation is performed by using the
current address in SP to write RARl into the Data Memory. This is achieved
by selecting input-0 for MUXD and input-0 for MUXE, and setting DM w to
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Figure 8.33: Control signals required for CALL k instruction.
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Figure 8.33: Control signals required for CALL k instruction (continued).

1. The second operation is accomplished by setting both inc dec and SP en

to 1. The decremented SP (i.e., SP-1) is then routed back and latched to SP
at the end of the clock cycle. All other control signals can be “don’t cares”,
except for IR en, NPC en, RF wA, RF wB, and DM r.

Operations in EX3 are similar to EX2, except this time RARh is pushed
onto the stack. In addition, PC is updated with the target address, which
is achieved by routing k16 in NPC through the Address Adder (via MUXG)
and latching it onto the PC by setting MUXJ to 1 and PC en to 1. Otherwise,
all other control signals are identical to EX2.

Table 8.12 summarizes the required control signals for the six instructions
discussed in this section.

8.6.3 Register Address Logic

The Register Address Logic takes 5-bit register identifiers Rd and Rr, 6-
bit I/O register identifier A, and opcode, and appropriately generates 7-bit
register addresses for the two read ports (rA and rB) and the two write ports
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Table 8.12: Summary of control signals for instructions in Table 8.10

Control
Signals

IF
Instructions

ADD ORI BREQ LD ST CALL

EX1 EX1 EX1 EX1 EX2 EX1 EX2 EX1 EX2 EX3
Z=0 Z=1

MJ 0 x x 1 1 x x x x x x 1

MK 0 x x x x x x x x 1 x x

ML 0 x x x x x x x x 0 x x

IR en 1 x x x x 0 x 0 x 0 0 x

PC en 1 0 0 0 1 0 0 0 0 x x 1

PCh en 0 0 0 0 0 0 0 0 0 0 0 0

PCl en 0 0 0 0 0 0 0 0 0 0 0 0

NPC en 1 x x x x x x x x 1 0 x

SP en 0 0 0 0 0 0 0 0 0 0 1 1

DEMUX x x x x x x x x x x x x

MA x 1 0 x x x x x x x x x

MB x 0 0 x x x 1 x x x x x

ALU f xxxx 0000 1001 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

MC xx 00 00 xx xx xx 00 xx xx xx xx xx

RF wA 0 0 0 0 0 0 0 0 0 0 0 0

RF wB 0 1 1 0 0 0 1 0 0 0 0 0

MD x x x x x x x x 1 x 0 0

ME x x x x x x 1 x 1 x 0 0

DM r x x x x x x 1 x 0 x 0 0

DM w 0 0 0 0 0 0 0 0 1 0 1 1

MF x x x 0 0 x x x x x x x

MG x x x 0 0 1 x 1 x x x 0

Adder f xx xx xx 00 00 11 xx 11 xx xx xx 11

Inc Dec x x x x x x x x x x 1 1

MH x x x x x 1 x 1 x x x x

MI x x x x x x x x x x 0 1

Rd! Rr!

Rd! Rr!

X!

X!

op!

Rd!

Figure 8.34: RAL Mapping for ADD.

(wA and wB).

Figure 8.34 shows the RAL mapping for the ADD instruction, where Rd

and Rr are explicitly defined by the instructions (op and X represent opcode
bits and “don’t care”, respectively). This instruction directly maps Rd and
Rr to inputs rA, rB, and wB of the Register File, i.e., rA = Rd, rB = Rr, and
wB = Rd.

Figure 8.35 shows the RAL mapping ORI. The main different between
the RAL mapping for ORI and ADD is that, Rr is “don’t care” for ORI because
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Rd 

Figure 8.35: RAL Mapping for ORI.

it uses the constant K rather than the source operand Rr by selecting input-0
of MUXA.

The I/O register identifier A needs to be offset by 32 since the 64 I/O
registers reside after the 32 GPRs. This is achieved by padding a zero left
of the most significant bit to convert the 6-bit I/O register identifier A into
a 7-bit number and then adding 32 to do it. Since I/O instructions are
not included in the six instructions in Table 8.10, their mapping will not be
discussed.

The logic implementations for instructions that implicitly define regis-
ters (e.g., X, Y, and Z-registers for LD and ST) are more tricky and require
the understanding of how opcodes are encoded. The address registers for
these instructions are specified by bits 3 and 2 of the instruction format
(indicated as “aa” in Figure 8.25). For the Y-register, bits 3-2 are 10 (for
your information, bits 3-2 are 11 for X-register and 00 for Z-register). Thus,
these two bits need to be decoded from the IR and appropriately mapped
to registers R29 and R28.

Figure 8.36 shows the mapping for the LD and ST instructions. These two
instructions require the information from the opcode as well its current state
(see Section 8.6.4) to determine the RAL mapping. These two instructions
share the same EX1and refer to the Y-register, and thus Yh and Yl have
to be mapped to rA and rB, respectively. For LD in EX2, Rd serves as the
destination register identifier, and thus it is mapped to wB. In contrast,
for ST in EX2, Rd from the instruction format serves as the source register
identifier, and is mapped to rB.

Finally, both BREQ and CALL instructions do not require RAL mapping
because they do not use the Register File. Table 8.13 summarizes the RAL
mapping for the six instructions.

Figure 8.37 shows the implementation of the RAL for the instructions
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Figure 8.36: RAL Mapping for LD and ST.

in Table 8.10. The three MUXs choose between registers defined either
explicitly or implicitly. For explicitly defined register identifiers, such as
Group A and B instructions, bits 15-14 in the instruction format (which
equal to either 00 or 01) cause the GPR signal choose rA = Rd, rB = Rr,
and wB = Rd. For implicitly defined register identifiers, such as Group C
instructions, the Decoder Logic uses GPR to choose Yh and Yl, which are
hardwired to 00111012 (29) and 00111002 (28), respectively, based on bits
15-9 of the instruction and the current state (see Section 8.6.4).

8.6.4 Sequence Control

Now that all the control signals for Fetch and Execute cycles have been
defined, we need a sequence control that governs the transitions from one
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Table 8.13: Summary of RAL mapping for instructions in Table 8.10

RF R/W
Ports

IF
Instructions

ADD ORI BREQ LD ST CALL

EX1 EX1 EX1 EX1 EX2 EX1 EX2 EX1 EX2 EX3

wA x x x x x x x x x x x

wB x Rd Rd x x Rd x x x x x

rA x Rd Rd x Yh x Yh x x x x

rB x Rr x x Yl x Yl Rd x x x

RrRd

rB

7

rA

7

wB
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wA

Yl

zfzf
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Figure 8.37: Register Address Logic.

cycle to another, where the cycles are IF, EX1, EX2, and EX3. In sequential
control terms, each cycle is referred to as a state. Thus, the sequential
control of our multi-cycle implementation involves defining a finite state
machine. Figure 8.38 shows the finite state diagram for the multi-cycle
implementation of the six instructions in Table 8.10.

A circle represents a state containing register transfer operations or con-
trol signals that are activated while the CAU is in this state. An arrow
between states indicates transition from one state to another. There are
eleven states in the finite state digram for the multi-cycle implementation,
each represented by a 4-bit binary number (0000∼1010).

Table 8.14 shows the state table, which was derived from the finite state
diagram in Figure 8.38 and control signals from Table 8.12. The sequence
control starts at state 0000 (i.e., IF) and then appropriately transitions to
other states based on the opcode of the fetched instruction indicated by ‘–’
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IR←M[PC],
PC←PC+1,
NPC←PC+1

Rd←Rd+Rr Rd←Rd-K -- DMAR←Y

Rd←
M[DMAR]

M[DMAR]←
Rd

NPC←M[PC]
PC ←PC+1

M[SP]←PCl
SP ←SP-1

M[SP]←PCh
SP ←SP-1
PC ←NPC

IF

ADD ORI BREQ LD or ST CALL

CALL

CALL

LD ST

EX1

EX2

EX3

0000

0001 0010 0011 0101 1000

0110 0111 1001

1010

PC←PC
+1+se k

BREQ
Z=1Z=0

0100

Figure 8.38: The Finite State Machine control for the multi-cycle datapath.

in the Next State field. The opcode field and the Z-flag are “don’t cares” in
this state indicating that instruction fetch occurs regardless of these inputs.

For instructions that require a single Execute cycle (i.e., ADD, ORI, and
BREQ), the current state, i.e., 0000 (IF), together with the opcode of the
fetched instruction (see Section 8.25) uniquely define the next state. The
bit pattern 00 in the two most significant bits of the fetched instruction
uniquely defines this instruction as ADD and its next state as 0001. Similarly,
the bit pattern 01 uniquely defines this instruction as ORI and its next state
as 0010. The BREQ instruction requires the Z-flag as well as the opcode as
inputs. Therefore, if the bits 15-14 are 11, and if the Z-flag is set by the
predecessor instruction, the sequence control transitions to state 0100. If the
opcode bits indicate BREQ but the Z-flag is not set, then the sequence control
transitions to state 0011, where ‘–’ indicates the state of the processor is not
modified in this state.

For instructions that require multiple execute cycles (i.e., LD, ST, and
CALL), again the current state 0000 (IF) together with the opcode uniquely
define the next state (e.g., EX1). Both LD and ST instructions share the
common EX1 state (i.e., 0101) and have identical opcodes except for bit
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9. If bit 9 is 0, then the instruction is LD, and thus the next state is 0110;
otherwise, it is ST and thus the next state is 0111. Therefore, if the bits 15-10
are 100100, then the instruction is either LD or ST and thus the next state is
0101. Once in state 0101, bit 9 distinguishes between the two instructions.
The CALL instruction is uniquely defined by the bit pattern 1001010 in bits
15-9, and thus state transitions occurs from 0000 to 1000. However, once in
state 1000, the transition to state 1001 and from state 1001 to state 1010
are independent of the input and defined only by the Current State.

After each instruction executes its last Execute cycle, the control se-
quence transitions back to state 0000, and the instruction cycle starts over.

8.7 FSM Implementation of the Control Unit

Under Construction!!!

8.8 Pipeline Implementation

Under Construction!!!
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Arithmetic and Logic Unit
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9.1 Introduction

Arithmetic and Logic Unit (ALU) is one of the most important component in
a processor. ALU is involved in not only arithmetic and logic operations but
also in just about every micro-operation. For example, ALU or a variation of
an ALU (depending on the microarchitecture) is used to calculate effective
addresses for operands in memory, branch target addresses for conditional
and unconditional branches, update stack pointer, etc. It is even used to
transfer data from one register to another.

Our discussion starts with a review of binary number system in Sec-
tion 9.2. Section 9.3 discusses shift operations. This is followed by a design
of a basic ALU in Section 9.4. The objective of this section is to discuss how
an ALU for a typical microcontroller, such as AVR, may be designed. Sec-
tions 9.5 and 9.6 present integer multiplication and division, respectively.
These two sections also present techniques to speedup multiplication and

267
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Figure 9.1: Information in a computer.

division operations, which is crucial for performance. Finally, Section 9.7
presents floating-point representation and operations.

9.2 Number Systems

Computers deal with information, but information has many different mean-
ings. Figure 9.1 shows the taxonomy of information handle by computers.
At the highest level, information in a computer is either instructions, more
specifically assembly instructions, or data. In Chapters 4 and 8, we dis-
cussed the information contained in an instruction format and how it is
decoded and executed by the underlying microarchitecture. This chapter
discusses operations on data, which can be either numeric or non-numeric.
Non-numeric data refers to American Standard Code for Information In-
terchange (ASCII) codes that represent the character-encoding scheme for
the English Alphabet. Numeric data can be further divided into fixed-point
and floating-point. Floating-point format is significantly different than fixed-
point and requires special treatment. Fixed-point or integer data can be not
only of different sizes but also unisgned as well signed. Therefore, it is im-
portant to understand the type of data we are dealing with since an n-bit
data will have different meaning depending on its type. This is the reason
why high-level languages require that programmers declare type information
with each variable declaration, such as int, short, long, float, double,
signed, unsigned, or char. This section discusses arithmetic and logic
operations on fixed-point binary numbers.
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An unsigned n-bit binary number N is given as

N = (bn−1bn−2 · · · b1b0), (9.1)

which has a range of

0 ≤ N ≤ 2n − 1. (9.2)

In contrast, there are three ways to represent signed numbers: sign-
magnitude, 1’s-complement, and 2’s-complement. The following subsections
discuss each one of them.

9.2.1 Sign-Magnitude Representation

Signed-Magnitude representation of an n-bit binary number N is given as

N = (0bn−2bn−3 · · · b1b0) and (9.3)

−N = (1bn−2bn−3 · · · b1b0),

which has a range of

+0 ≤ N ≤ 2n−1 − 1 and (9.4)

−(2n−1 − 1) ≤ N ≤ −0.

The following example shows sign-magnitude representation with n=4:

0111 = 7 1111 = −7

0110 = 6 1110 = −6

0101 = 5 1101 = −5

0100 = 4 1100 = −4

0011 = 3 1011 = −3

0010 = 2 1010 = −2

0001 = 1 1001 = −1

0000 = +0 1000 = −0
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As can be seen from this example, sign-magnitude representation is
pretty straightforward and consistent with the way we represent numbers in
decimal. That is, the most significant bit (MSB) represents the sign and the
rest of the n − 1 bits represent the number. However, there are some chal-
lenges with using signed-magnitude to perform arithmetic. First, there are
two zeroes (i.e., +0 and −0), which require additional logic to distinguish
these two cases. Second, adding two numbers of opposite signs is difficult.
Case in point, consider the following example of adding two sign-magnitude
numbers with opposite signs.

Example 9.1. Addition of two numbers with opposite signs in Sign-Magnitude
representation.

0 1 0 0 (+4)

+ 1 1 0 1 (-5)

1 0 0 1 (-1)

The result of this operation is pretty straightforward when it is performed
in decimal, i.e., 4− 5 = −1. However, in order to perform this operation in
binary, we applied some know-how gained from having performed arithmetic
since grade school. That is, we compared the magnitudes of the two numbers
to determine that 5 is larger than 4 and thus perform 5 − 4 = 1, and then
the result was negated to generate −1. Thus, performing this operation in
hardware requires a magnitude comparator and a subtractor. We will see
in subsequent subsections that 1’s- and 2’s-complement representations do
not have this shortcoming.

9.2.2 1’s-complement Representation

1’s-complement representation of an n-bit binary number N is given as

N = (0bn−2bn−3 · · · b1b0) and (9.5)

−N = (1b̄n−2b̄n−3 · · · b̄1b̄0),

with a range given by

+0 ≤ N ≤ 2n−1 − 1 and (9.6)

−(2n−1 − 1) ≤ N ≤ −0.

The following shows 1’s-complement representation with n = 4:
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0111 = 7 1111 = −0

0110 = 6 1110 = −1

0101 = 5 1101 = −2

0100 = 4 1100 = −3

0011 = 3 1011 = −4

0010 = 2 1010 = −5

0001 = 1 1001 = −6

0000 = 0 1000 = −7

We learned from introductory course in digital logic design that 1’s-
complement of a number N , OC(N), is obtained by complementing each
bit, i.e., b̄i. However, there is a mathematical meaning of OC(N) with n
bits, which is given by

OC(N) = 2n −N − 1. (9.7)

For example, 1’s-complement of 0101 (5) is 24 − 5− 1 = 10, which is equal
to 1010, which is equivalent to complementing each bit of 0101. Similarly,
1’s-complement of 1010 (-5) is 24 − 10− 1 = 5, which is equal to 0101.

The following examples illustrate addition/subtraction operations in 1’s-
complement, which do not require a comparator or a subtractor:

Example 9.2. Addition of two positive numbers in 1’s-complement.

0 0 1 1 (3)

+ 0 0 1 0 (2)

0 1 0 1 (5)

This example adds two positive numbers, and thus it is performed using
straightforward binary addition.

Now consider the following examples of adding two numbers of opposite
signs.

Example 9.3. Addition of two numbers with opposite signs in 1’s-complement:

0 1 0 0 (4) 0 1 0 1 (5)

+ 1 0 1 0 (-5) + 1 0 1 1 (-4)

1 1 1 0 (-1) 1 0 0 0 0

+ 1 EAC

0 0 0 1 (1)



272 CHAPTER 9. ARITHMETIC AND LOGIC UNIT

In the first example, the second operand is a negative number. Therefore,
the net effect is to subtract the magnitude of the second operand from the
first operand, which is performed by simply adding the two numbers. The
result is a negative number, which is indicated by the MSB, and thus taking
1’s-complement of 1110 gives 0001 indicating that the result 1110 is −1.

The second example generates a carry-out , which needs to be added to
the partial result to generate the final result. This process of adding the
carry-out is referred to as end-around carry (EAC).

So why do we have to perform EAC when we add/subtract in 1’s-
complement? The answer lies in Equation 9.7. Consider two positive num-
bers N1 and N2. Performing N1−N2 is equivalent to adding 1’s-complement
of N2 to N1, which is represented by the following equation:

N1 +OC(N2) = N1 + 2n −N2 − 1 (9.8)

= 2n + (N1 −N2)− 1.

If N1 > N2, then the result should be (N1 −N2), but there are extra terms
(mainly 2n and −1) that should not be part of the result. The process
involved in removing these two terms is to add 1, which represents the
2n term or the carry-out, to the partial result to eliminate the −1 term,
thus EAC! If N1 < N2, then the result should be OC(N1 − N2), which is
2n+(N1−N2)−1. Thus, there will be no carry-out and no need to perform
EAC! In the case N1 = N2, the result should be 2n − 1, which means there
is no carry-out and the result should be all ones (try it for yourself!).

These results also show that 1’s-complement can be used as a magnitude
comparator. That is, after performing N1 − N2, if there is carry-out then
N1 > N2. If there is no carry-out, then N1 < N2. If there is no carry-out
and the result is zero, then N1 = N2.

The problem with 1’s-complement representation is that, in addition to
having to detect two zeros, an addition/subtraction takes at most two add
delays, where an add delay represents the delay to perform n-bit addition/-
subtraction, due EAC.

The following example shows when an overflow occurs.

Example 9.4. Addition of two numbers that cause an overflow.

0 1 0 1 (5)

+ 0 0 1 1 (3)

1 0 0 0 (-7)
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The above example adds two positive numbers but the MSB of the result
indicates it is negative. This indicates an overflow , which occurs when the
result is larger than the maximum range of 2n−1 − 1.

9.2.3 2’s-complement Representation

2’s-complement representation of an n-bit binary number N is given as

N = (0bn−2bn−3 · · · b1b0) and (9.9)

−N = (1b̄n−2b̄n−3 · · · b̄1b̄0 + 1),

with a range given by

−2n−1 ≤ N ≤ 2n−1 − 1. (9.10)

The following shows 2’s-complement representation with n=4:

0111 = 7 1111 = −1

0110 = 6 1110 = −2

0101 = 5 1101 = −3

0100 = 4 1100 = −4

0011 = 3 1011 = −5

0010 = 2 1010 = −6

0001 = 1 1001 = −7

0000 = 0 1000 = −8

As can be seen, 2’s-complement representation has only one zero and extends
the range of negative numbers by one more number.

Again, we learned that 2’s-complement of a number N , TC(N), is ob-
tained by first performing 1’s-complement and then adding one. Similar to
OC(N), the mathematical meaning of TC(N) with n bits is given by

TC(N) = 2n −N. (9.11)

For example, 2’s-complement of 0101 (5) is 24 − 5 = 11, which is 1011 and
equivalent to complementing each bit of 0101 and then adding one to it.
Similarly, 2’s-complement of 1011 (-5) is 24 − 11 = 5, which is 0101.

The following examples illustrate adding two numbers of opposite signs.
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Example 9.5. Addition of two numbers with opposite signs:

0 1 0 0 (4) 0 1 1 0 (6)

+ 1 0 1 0 (-6) + 1 1 0 1 (-3)

1 1 1 0 (-2) 1 0 0 1 1 Discard carry

0 0 1 1 (3)

In the first example, no carry-out was generated. In the second example,
carry-out was generated and discarded to yield the final result.

The reason why the carry-out is discarded in 2’s-complement can be
explained using Equation 9.11. Consider two positive numbers N1 and N2.
Performing N1 −N2 is equivalent to

N1 + TC(N2) = N1 + 2n −N2 = 2n + (N1 −N2). (9.12)

Suppose N1 > N2, then the result should be (N1 − N2), but there are an
extra term (i.e., 2n) that should not be part of the result. 2n term represents
the carry-out, and thus discarding it results in the correct answer! When
N1 < N2, then the result should be TC(N1 −N2), which is 2n + (N1 −N2).
Thus, there should not be a carry-out! For N1 = N2, the result should be
2n, which means all zeros and a carry-out (try it for yourself!).

Similar to 1’s-complement, 2’s-complement can also be used to perform
magnitude comparison. That is, after performing N1−N2, if there is carry-
out, then N1 > N2. If there is no carry-out, then N1 < N2. If there is a
carry-out and the result is zero, then N1 = N2.

Based on the aforementioned discussion, 2’s-complement is the best num-
ber system for binary arithmetic because it only has one zero and requires
at most one add delay. Therefore, signed numbers are represented in 2’s-
complement.

9.3 Shift Operations

Under Construction!!!

9.4 Basic ALU Design

Under Construction!!!

9.5 Multiplication

Under Construction!!!
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9.6 Division

Under Construction!!!

9.7 Floating-Point Number

Under Construction!!!
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Appendix A

AVR Instruction Set
Summary

This appendix provides descriptions of all the AVR instructions and it serves
as a quick reference for assembly programming. There are five categories of
instructions in the AVR instruction set:
• Arithmetic and Logic
• Data Transfer
• Branch
• Bit and Bit-test
• MCU control

The following tables list these instructions.

Table A.1: AVR Arithmetic and Logic Instructions

ARITHMETIC AND LOGIC INSTRUCTIONS

Mnemonics Operands Description Operation Flags #Clks

Two Registers

ADD Rd, Rr Add two Registers Rd←Rd+Rr Z,C,N,V,H 1

ADC Rd, Rr Add with Carry two Registers Rd←Rd+Rr+C Z,C,N,V,H 1

SUB Rd, Rr Subtract two Registers Rd←Rd-Rr Z,C,N,V,H 1

SBC Rd, Rr Subtract with Carry two Registers Rd←Rd-Rr-C Z,C,N,V,H 1

AND Rd, Rr Logical AND Registers Rd← Rd∧Rr Z,N,V 1

OR Rd, Rr Logical OR Registers Rd← Rd∨Rr Z,N,V 1

EOR Rd, Rr Exclusive OR Registers Rd←Rd⊕Rr Z,N,V 1

Continued on next page
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Table A.1 continued from previous page

Mnemonics Operands Description Operation Flags #Clks

MUL Rd, Rr Multiply Unsigned R1:R0←Rd×Rr Z,C 2

MULS Rd, Rr Multiply Signed R1:R0←Rd×Rr Z,C 2

MULSU Rd, Rr Multiply Signed with Unsigned R1:R0←Rd×Rr Z,C 2

FMUL Rd, Rr Fractional Multiply Unsigned R1:R0←(Rd×Rr)<<1 Z,C 2

FMULS Rd, Rr Fractional Multiply Signed R1:R0←(Rd× Rr)<<1 Z,C 2

FMULSU Rd, Rr Fractional Multiply Signed with
Unsigned

R1:R0←(Rd× Rr)<<1 Z,C 2

Register and Constant

ADIW Rdl,K Add Immediate to Word Rdh:Rdl←Rdh:Rdl+K Z,C,N,V,S 2

SUBI Rd, K Subtract Constant from Register Rd←Rd-K Z,C,N,V,H 1

SBCI Rd, K Subtract with Carry Constant
from Reg.

Rd←Rd-K-C Z,C,N,V,H 1

SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl←Rdh:Rdl-K Z,C,N,V,S 2

ANDI Rd, K Logical AND Register and
Constant

Rd←Rd∧K Z,N,V 1

ORI Rd, K Logical OR Register and Constant Rd← Rd∨K Z,N,V 1

SBR Rd, K Set Bit(s) in Register Rd←Rd∨K Z,N,V 1

CBR Rd, K Clear Bit(s) in Register Rd←Rd∧($FF-K) Z,N,V 1

One Register

COM Rd One’s Complement Rd←$FF-Rd Z,C,N,V 1

NEG Rd Two’s Complement Rd←$00-Rd Z,C,N,V,H 1

INC Rd Increment Rd←Rd+1 Z,N,V 1

DEC Rd Decrement Rd←Rd-1 Z,N,V 1

TST Rd Test for Zero or Minus Rd←Rd∧Rd Z,N,V 1

CLR Rd Clear Register Rd←Rd⊕Rd Z,N,V 1

SER Rd Set Register Rd←$FF None 1

Table A.2: Data Transfer Instructions

DATA TRANSFER INSTRUCTIONS

Mnemonics Operands Description Operation Flags #Clks

Register(s) to Register(s) Move

MOV Rd, Rr Move Between Registers Rd ← Rr None 1

MOVW Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr None 1

Continued on next page
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Table A.2 – continued from previous page

Mnemonics Operands Description Operation Flags #Clks

Load Constant to Register

LDI Rd, K Load Immediate Rd ← K None 1

Load from Memory

LD Rd, X Load Indirect Rd ← (X) None 2

LD Rd, X+ Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None 2

LD Rd, -X Load Indirect and Pre-Dec. X ← X - 1, Rd ← (X) None 2

LD Rd, Y Load Indirect Rd ← (Y) None 2

LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2

LD Rd, -Y Load Indirect and Pre-Dec. Y ← Y - 1, Rd ← (Y) None 2

LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None 2

LD Rd, Z Load Indirect Rd ← (Z) None 2

LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 None 2

LD Rd, -Z Load Indirect and Pre-Dec. Z ← Z - 1, Rd ← (Z) None 2

LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2

LDS Rd, k Load Direct from SRAM Rd ← (k) None 2

Store to Memory

ST X, Rr Store Indirect (X) ← Rr None 2

ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X + 1 None 2

ST -X, Rr Store Indirect and Pre-Dec. X ← X - 1, (X) ← Rr None 2

ST Y, Rr Store Indirect (Y) ← Rr None 2

ST Y+, Rr Store Indirect and Post-Inc. (Y) ← Rr, Y ← Y + 1 None 2

ST -Y, Rr Store Indirect and Pre-Dec. Y ← Y - 1, (Y) ← Rr None 2

STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr None 2

ST Z, Rr Store Indirect (Z) ← Rr None 2

ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 None 2

ST -Z, Rr Store Indirect and Pre-Dec. Z ← Z - 1, (Z) ← Rr None 2

STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr None 2

STS k, Rr Store Direct to SRAM (k) ← Rr None 2

Load from Program Memory

LPM Load Program Memory R0 ← (Z) None 3

LPM Rd, Z Load Program Memory Rd ← (Z) None 3

LPM Rd, Z+ Load Program Memory and
Post-Inc

Rd ← (Z), Z ← Z+1 None 3

ELPM Extended Load Program Memory R0 ← (RAMPZ:Z) None 3

Continued on next page
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Table A.2 – continued from previous page

Mnemonics Operands Description Operation Flags #Clks

ELPM Rd, Z Extended Load Program Memory Rd ← (RAMPZ:Z) None 3

ELPM Rd, Z+ Extended Load Program Memory
and Post-Inc

Rd ← (RAMPZ:Z),
RAMPZ:Z ←
RAMPZ:Z+1

None 3

Store to Program Memory

SPM Store Program Memory (Z) ← R1:R0 None -

Load/Store from/to I/O Register

IN Rd, P In Port Rd ← P None 1

OUT P, Rr Out Port P ← Rr None 1

Stack Manipulation

PUSH Rr Push Register on Stack STACK ← Rr None 2

POP Rd Pop Register from Stack Rd ← STACK None 2

Table A.3: Branch Instructions

BRANCH INSTRUCTIONS1

Mnemonics Operands Description Operation Flags #Clks

Jump

RJMP k Relative Jump PC←PC+k+1 None 2

IJMP Indirect Jump to (Z) PC←Z None 2

JMP k Direct Jump PC←k None 3

Subroutine Calls and Return

RCALL k Relative Subroutine Call PC←PC+k+1 None 3

ICALL Indirect Call to (Z) PC←Z None 3

CALL k Direct Subroutine Call PC←k None 4

RET Subroutine Return PC←STACK None 4

RETI Return from Interrupt PC←STACK I 4

Compare

CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr)
PC←PC+2 or 3

None 1/2/ 3

CP Rd,Rr Compare Rd - Rr Z, N,V,C,H 1

CPC Rd,Rr Compare with Carry Rd - Rr - C Z, N,V,C,H 1

CPI Rd,K Compare Register with Immediate Rd - K Z, N,V,C,H 1

Skip if cond

Continued on next page
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Table A.3 – continued from previous page

Mnemonics Operands Description Operation Flags #Clks

SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0)
PC←PC+2 or 3

None 1/2/3

SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1)
PC←PC+2 or 3

None 1/2/3

SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0)
PC←PC+2 or 3

None 1/2/3

SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1)
PC←PC+2 or 3

None 1/2/3

Conditional Branch

BRBS s, k Branch if Status Flag Set if (SREG(s)=1) then
PC←PC+k+1

None 1/2

BRBC s, k Branch if Status Flag Cleared if (SREG(s)=0) then
PC←PC+k+1

None 1/2

BREQ k Branch if Equal if (Z=1) then
PC←PC+k+1

None 1/2

BRNE k Branch if Not Equal if (Z=0) then
PC←PC+k+1

None 1/2

BRCS k Branch if Carry Set if (C=1) then
PC←PC+k+1

None 1/2

BRCC k Branch if Carry Cleared if (C=0) then
PC←PC+k+1

None 1/2

BRSH k Branch if Same or Higher if (C=0) then
PC←PC+k+1

None 1/2

BRLO k Branch if Lower if (C=1) then
PC←PC+k+1

None 1/2

BRMI k Branch if Minus if (N=1) then
PC←PC+k+1

None 1/2

BRPL k Branch if Plus if (N=0) then
PC←PC+k+1

None 1/2

BRGE k Branch if Greater or Equal, Signed if (N⊕V= 0) then
PC←PC+k+1

None 1/2

BRLT k Branch if Less Than Zero, Signed if (N⊕V= 1) then
PC←PC+k+1

None 1/2

BRHS k Branch if Half Carry Flag Set if (H=1) then
PC←PC+k+1

None 1/2

BRHC k Branch if Half Carry Flag Cleared if (H=0) then
PC←PC+k+1

None 1/2

BRTS k Branch if T Flag Set if (T=1) then
PC←PC+k+1

None 1/2

BRTC k Branch if T Flag Cleared if (T=0) then
PC←PC+k+1

None 1/2

BRVS k Branch if Overflow Flag is Set if (V=1) then
PC←PC+k+1

None 1/2

BRVC k Branch if Overflow Flag is Cleared if (V=0) then
PC←PC+k+1

None 1/2

Continued on next page
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Table A.3 – continued from previous page

Mnemonics Operands Description Operation Flags #Clks

BRIE k Branch if Interrupt Enabled if (I=1) then
PC←PC+k+1

None 1/2

BRID k Branch if Interrupt Disabled if (I = 0) then
PC←PC+k+1

None 1/2

Table A.4: Bit and Bit-test Instruction

BIT AND BIT-TEST INSTRUCTIONS

Mnemonics Operands Description Operation Flags #Clks

SBI P,b Set Bit in I/O Register (P,b) ← 1 None 2

CBI P,b Clear Bit in I/O Register (P,b) ← 0 None 2

LSL Rd Logical Shift Left Rd(n+1)←Rd(n),
Rd(0)←0

Z,C,N,V 1

LSR Rd Logical Shift Right Rd(n)←Rd(n+1),
Rd(7)←0

Z,C,N,V 1

ROL Rd Rotate Left Through Carry Rd(0)←C,
Rd(n+1)←Rd(n),
C←Rd(7)

Z,C,N,V 1

ROR Rd Rotate Right Through Carry Rd(7)←C,
Rd(n)←Rd(n+1),
C←Rd(0)

Z,C,N,V 1

ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1),
n=0..6

Z,C,N,V 1

SWAP Rd Swap Nibbles Rd(3..0)←Rd(7..4),
Rd(7..4)←Rd(3..0)

None 1

BSET s Flag Set SREG(s) ← 1 SREG(s) 1

BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1

BST Rr, b Bit Store from Register to T T ← Rr(b) T 1

BLD Rd, b Bit load from T to Register Rd(b) ← T None 1

SEC Set Carry C ← 1 C 1

CLC Clear Carry C ← 0 C 1

SEN Set Negative Flag N ← 1 N 1

CLN Clear Negative Flag N ← 0 N 1

SEZ Set Zero Flag Z ← 1 Z 1

CLZ Clear Zero Flag Z ← 0 Z 1

SEI Global Interrupt Enable I ← 1 I 1

CLI Global Interrupt Disable I ← 0 I 1

SES Set Signed Test Flag S ← 1 S 1

Continued on next page
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Table A.4 – continued from previous page

Mnemonics Operands Description Operation Flags #Clks

CLS Clear Signed Test Flag S ← 0 S 1

SEV Set Twos Complement Overflow. V ← 1 V 1

CLV Clear Twos Complement Overflow V ← 0 V 1

SET Set T in SREG T ← 1 T 1

CLT Clear T in SREG T ← 0 T 1

SEH Set Half Carry Flag in SREG H ← 1 H 1

CLH Clear Half Carry Flag in SREG H ← 0 H 1

Table A.5: MCU Control Instructions

MCU CONTROL INSTRUCTIONS

Mnemonics Description Flags #Clks

NOP No Operation None 1

SLEEP Sleep (see specific descr. for Sleep function) None 1

WDR Watchdog Reset (see specific descr. for WDR/timer) None 1

BREAK Break For On-chip Debug Only None N/A
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Appendix B

AVR Assembler Directives

The AVR assembler supports a number of directives. These directives are
not a part of the AVR instruction set and do not get assembled into ma-
chine code. Instead, they are used to adjust the location of the program in
memory, initialize memory locations, define variables and names, etc. The
set of directives supported by the AVR assembler is shown in Table B.1

Table B.1: AVR Assembler Directives

AVR Assembler Directives

Directive Description

Header

.DEVICE Defines the type of the target processor and the applicable set
of instructions. Example usage: .DEVICE AT90S8515

.DEF Defines a symbol to refer to a register. Example usage: .DEF

MyReg = R16)

.EQU Defines a symbol and sets its value. This value cannot be
changed later. Example usage: .EQU test = 1234567)

.SET Defines a symbol and sets its value. This value can be changed
later. Example usage: .SET io offset = 0x23

Continued on next page
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Table B.1 – continued from previous page

Directive Description

.INCLUDE Includes a file and assembles its content. Example usage:
.INCLUDE "iodefs.asm".

Code

.CSEG Defines the start of a code segment.

.DB Initializes program memory or EEPROM with 8-bit values. The
number of inserted bytes must be even; otherwise, an additional
zero byte will be inserted by the assembler. Example usage:
array: .DB 1, 2, 3, 4, 5

.DW Initializes program memory or EEPROM with 16-bit values. Ex-
ample usage: constArry: .DW 0, 0xFFFF, 0x7FFF, 65536

.LISTMAC Macros will be listed in the listfile, which contains assembly
source code, addresses, and opcodes, generated by the assembler.

.MACRO Defines the beginning of a macro. Example usage: .MACRO

macroname

.ENDMACRO Defines the end of the macro.

EEPROM

.ESEG Defines the start of an EEPROM segment.

.DB Initializes program memory or EEPROM with 8-bit values. The
number of inserted bytes must be even; otherwise, an additional
zero byte will be inserted by the assembler

.DW Initializes program memory or EEPROM with 16-bit values.

SRAM

.DSEG Defines the start of a new data segment.

.BYTE Reserves memory spaces in the SRAM. Example usage: buffer:
.BYTE 20

Continued on next page



287

Table B.1 – continued from previous page

Directive Description

Everywhere

.ORG Defines the address within the respective segment. Example
usage: .ORG 0x0100

.LIST Generates a listfile, which contains assembly source code, ad-
dresses, and opcodes.

.NOLIST Turns off list file generation.

.INCLUDE Includes a file and assembles its content. Example usage:
.INCLUDE "iodefs.asm".

.EXIT Indicates the end of the assembler-source code.
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Appendix C

AVR I/O Registers –
ATmega128

This appendix provides descriptions of all the I/O registers for the AT-
mega128 microcontroller. Table C.1 shows the registers in the 64 I/O regis-
ter space, while Table C.2 shows the registers in the extended I/O register
space. In Table C.1, the address of the form $xx represents the I/O address
(used by IN and OUT instructions). On the other hand, the address of the
form ($xx) represents the location of the register in memory. Thus, the LDS

and STS instructions can also be used to access these registers. Note that the
registers in the extended I/O spec shown in Table C.2 can only be accessed
using the LDS and STS instructions.

Table C.1: 64 I/O Registers

Address I/O Register Description

$3F ($5F) Status Register SREG Status Register

$3E ($5E)
Stack Pointer

SPH Stack Pointer High Byte

$3D ($5D) SPL Stack Pointer Low Byte

$3C ($5C) Clock XDIV XTAL Divide Control Register

$3B ($5B) Program Memory Store RAMP RAM Page Z Select Register

$3A ($5A)

External Interrupts

EICRB External Interrupt Control Register B

$39 ($59) EIMSK External Interrupt Mask Register

$38 ($58) EIFR External Interrupt Flag Register

$37 ($57)
Timer/Counter0 & 1

TIMSK Timer Interrupt Mask Register

$36 ($56) TIFR Timer Interrupt Flag Register

Continued on next page
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Table C.1 – Continued from previous page

Address I/O Register Description

$35 ($55)
MCU

MCUCR MCU Control Register

$34 ($54) MCUCSR MCU Control and Status Register

$33 ($53)

Timer/Counter0

TCCR0 Timer/Counter Control Register 0

$32 ($52) TCNT0 Timer/Counter0 (8 Bit)

$31 ($51) OCR0 Timer/Counter0 Output Compare Register

$30 ($50) ASSR Asynchronous Status Register

$2F ($4F)

Timer/Counter1

TCCR1A Timer/Counter1 Control Register A

$2E ($4E) TCCR1B Timer/Counter1 Control Register B

$2D ($4D) TCNT1H Timer/Counter1 High Byte

$2C ($4C) TCNT1L Timer/Counter1 Low Byte

$2B ($4B) OCR1AH Output Compare Register 1A High Byte

$2A ($4A) OCR1AL Output Compare Register 1A Low Byte

$29 ($49) OCR1BH Output Compare Register 1B High Byte

$28 ($48) OCR1BL Output Compare Register 1B Low Byte

$27 ($47) ICR1H Timer/Counter1–Input Capture Register 1 High Byte

$26 ($46) ICR1L Timer/Counter1–Input Capture Register 1 Low Byte

$25 ($45)

Timer/Counter2

TCCR2 Timer/Counter Control Register 2

$24 ($44) TCNT2 Timer/Counter2 (8 Bit)

$23 ($43) OCR2 Output Compare Register 2

$22 ($42) Debugging OCDR On-chip Debug Register

$21 ($41) Watchdog Timer WDTCR Watchdog Timer Control Register

$20 ($40) Special Function SFIOR Special Function IO Register

$1F ($3F)

EEPROM

EEARH EEPROM Address Register High Byte

$1E ($3E) EEARL EEPROM Address Register Low Byte

$1D ($3D) EEDR EEPROM Data Register

$1C ($3C) EECR EEPROM Control Register

$1B ($3B)

PORTA

PORTA Port A Data Register

$1A ($3A) DDRA Port A Data Direction Register

$19 ($39) PINA Port A Input Pins Address

$18 ($38)

PORTB

PORTB Port B Data Register

$17 ($37) DDRB Port B Data Direction Register

$16 ($36) PINB Port B Input Pins Address

$15 ($35)

PORTC

PORTC Port C Data Register

$14 ($34) DDRC Port C Data Direction Register

$13 ($33) PINC Port C Input Pins Address

Continued on next page
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Table C.1 – Continued from previous page

Address I/O Register Description

$12 ($32)

PORTD

PORTD Port D Data Register

$11 ($31) DDRD Port D Data Direction Register

$10 ($30) PIND Port D Input Pins Address

$0F ($2F)

SPI

SPDR SPI Data Register

$0E ($2E) SPSR SPI Status Register

$0D ($2D) SPCR SPI Control Register

$0C ($2C)

USART0

UDR0 USART0 I/O Data Register

$0B ($2B) UCSR0A USART0 Control and Status Register A

$0A ($2A) UCSR0B USART0 Control and Status Register B

$09 ($29) UBRR0L USART0 Baud Rate Register Low

$08 ($28) Analog Comparator ACSR Analog Comparator Control and Status Register

$07 ($27)

ADC

ADMUX ADC Multiplexer Selection Register

$06 ($26) ADCSRA ADC Control and StatusRegister A

$05 ($25) ADCH ADC Data Register High Byte

$04 ($24) ADCL ADC Data Register Low Byte

$03 ($23)

PORTE

PORTE Port E Data Registe

$02 ($22) DDRE Port E Data Direction Register

$01 ($21) PINE Port E Input Pins Address

$00 ($20) PORTF PINF Port F Input Pins Address

Table C.2: Extended I/O Registers

Address I/O Register Description

($FF) Reserved -

(...) Reserved -

($9E) Reserved -

($9D)

USART1

UCSR1C USART 1 Control and Status Register A

($9C) UDR1 USART 1 I/O Data Register

($9B) UCSR1A USART 1 Control and Status Register A

($9A) UCSR1B USART 1 Control and Status Register B

($99) UBRR1L USART1 Baud Rate Register Low

($98) UBRR1H USART1 Baud Rate Register High

($97) Reserved -

($96) Reserved -

Continued on next page
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Table C.2 – Continued from previous page

Address I/O Register Description

($95)

USART0

UCSR0C USART 0 Control and Status Register C

($94) Reserved -

($93) Reserved -

($92) Reserved -

($91) Reserved -

($90) UBRR0H USART0 Baud Rate Register High

($8F) Reserved -

($8E) Reserved -

($8D) Reserved -

($8C)

Timer/Counter1 & 3

TCCR3C Timer/Counter1 High Byte

($8B) TCCR3A Timer/Counter3 Control Register A

($8A) TCCR3B Timer/Counter3 Control Register B

($89) TCNT3H Timer/Counter3–Counter Register High Byte

($88) TCNT3L Timer/Counter3–Counter Register Low Byte

($87) OCR3AH Timer/Counter3–Output Compare Register A High Byte

($86) OCR3AL Timer/Counter3–Output Compare Register A Low Byte

($85) OCR3BH Timer/Counter3–Output Compare Register B High Byte

($84) OCR3BL Timer/Counter3–Output Compare Register B Low Byte

($83) OCR3CH Timer/Counter3–Output Compare Register C High Byte

($82) OCR3CL Timer/Counter3–Output Compare Register C Low Byte

($81) ICR3H Timer/Counter3–Input Capture Register High Byte

($80) ICR3L Timer/Counter3–Input Capture Register Low Byte

($7F) Reserved -

($7E) Reserved -

($7D) ETIMSK Extended Timer Interrupt Mask Register

($7C) ETIFR Extended Timer Interrupt Flag Register

($7B) Reserved -

($7A) TCCR1C Timer/Counter1 Control Register C

($79) OCR1CH Timer/Counter1 ? Output Compare Register C High Byte

($78) OCR1CL Timer/Counter1 ? Output Compare Register C Low Byte

($77) Reserved -

($76) Reserved -

($75) Reserved -

Continued on next page
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Table C.2 – Continued from previous page

Address I/O Register Description

($74)

TWI

TWCR TWI Control Register

($73) TWDR TWI Data Register

($72) TWAR TWI Address Register

($71) TWSR TWI Status Register

($70) TWBR TWI Bit Rate Register

($6F) Internal Oscillator OSCCAL Oscillator Calibration Register

($6E) Reserved -

($6D)
External Memory

XMCRA External Memory Control Registers A

($6C) XMCRB External Memory Control Register B

($6B) Reserved -

($6A) External Interrupts EICRA External Interrupt Control Register A

($69) Reserved -

($68) Boot Loader SPMCSR Store Program Memory Control and Status Register

($67) Reserved -

($66) Reserved -

($65)

PORTG

PORTG Port G Data Registe

($64) DDRG Port G Data Direction Register

($63) PING Port G Input Pins Address

($62)
PORTF

PORTF Port F Data Register

($61) DDRF Port F Data Direction Register

($60) Reserved -
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Appendix D

AVR ATmega128 Definition
File (m128def.inc)

This appendix provides the m128def.inc definition file that contains all the
I/O register names, I/O register bit names, names of high and low bytes
of X, Y, and X address registers, and the highest address for the internal
SRAM for the ATmega128 microcontroller.

;***** THIS IS A MACHINE GENERATED FILE - DO NOT EDIT ********************

;***** Created: 2007-09-11 14:24 ******* Source: ATmega128.xml ***********

;*************************************************************************

;* A P P L I C A T I O N N O T E F O R T H E A V R F A M I L Y

;*

;* Number : AVR000

;* File Name : "m128def.inc"

;* Title : Register/Bit Definitions for the ATmega128

;* Date : 2007-09-11

;* Version : 2.24

;* Support E-mail : avr@atmel.com

;* Target MCU : ATmega128

;*

;* DESCRIPTION

;* When including this file in the assembly program file, all I/O register

;* names and I/O register bit names appearing in the data book can be used.

;* In addition, the six registers forming the three data pointers X, Y and

;* Z have been assigned names XL - ZH. Highest RAM address for Internal

;* SRAM is also defined

;*

;* The Register names are represented by their hexadecimal address.

;*

;* The Register Bit names are represented by their bit number (0-7).

;*

;* Please observe the difference in using the bit names with instructions

;* such as "sbr"/"cbr" (set/clear bit in register) and "sbrs"/"sbrc"

;* (skip if bit in register set/cleared). The following example illustrates
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;* this:

;*

;* in r16,PORTB ;read PORTB latch

;* sbr r16,(1<<PB6)+(1<<PB5) ;set PB6 and PB5 (use masks, not bit#)

;* out PORTB,r16 ;output to PORTB

;*

;* in r16,TIFR ;read the Timer Interrupt Flag Register

;* sbrc r16,TOV0 ;test the overflow flag (use bit#)

;* rjmp TOV0_is_set ;jump if set

;* ... ;otherwise do something else

;*************************************************************************

#ifndef _M128DEF_INC_

#define _M128DEF_INC_

#pragma partinc 0

; ***** SPECIFY DEVICE ***************************************************

.device ATmega128

#pragma AVRPART ADMIN PART_NAME ATmega128

.equ SIGNATURE_000 = 0x1e

.equ SIGNATURE_001 = 0x97

.equ SIGNATURE_002 = 0x02

#pragma AVRPART CORE CORE_VERSION V2E

; ***** I/O REGISTER DEFINITIONS *****************************************

; NOTE:

; Definitions marked "MEMORY MAPPED"are extended I/O ports

; and cannot be used with IN/OUT instructions

.equ UCSR1C = 0x9d ; MEMORY MAPPED

.equ UDR1 = 0x9c ; MEMORY MAPPED

.equ UCSR1A = 0x9b ; MEMORY MAPPED

.equ UCSR1B = 0x9a ; MEMORY MAPPED

.equ UBRR1H = 0x98 ; MEMORY MAPPED

.equ UBRR1L = 0x99 ; MEMORY MAPPED

.equ UCSR0C = 0x95 ; MEMORY MAPPED

.equ UBRR0H = 0x90 ; MEMORY MAPPED

.equ TCCR3C = 0x8c ; MEMORY MAPPED

.equ TCCR3A = 0x8b ; MEMORY MAPPED

.equ TCCR3B = 0x8a ; MEMORY MAPPED

.equ TCNT3L = 0x88 ; MEMORY MAPPED

.equ TCNT3H = 0x89 ; MEMORY MAPPED

.equ OCR3AL = 0x86 ; MEMORY MAPPED

.equ OCR3AH = 0x87 ; MEMORY MAPPED

.equ OCR3BL = 0x84 ; MEMORY MAPPED

.equ OCR3BH = 0x85 ; MEMORY MAPPED

.equ OCR3CL = 0x82 ; MEMORY MAPPED

.equ OCR3CH = 0x83 ; MEMORY MAPPED

.equ ICR3L = 0x80 ; MEMORY MAPPED

.equ ICR3H = 0x81 ; MEMORY MAPPED

.equ ETIMSK = 0x7d ; MEMORY MAPPED

.equ ETIFR = 0x7c ; MEMORY MAPPED

.equ TCCR1C = 0x7a ; MEMORY MAPPED
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.equ OCR1CL = 0x78 ; MEMORY MAPPED

.equ OCR1CH = 0x79 ; MEMORY MAPPED

.equ TWCR = 0x74 ; MEMORY MAPPED

.equ TWDR = 0x73 ; MEMORY MAPPED

.equ TWAR = 0x72 ; MEMORY MAPPED

.equ TWSR = 0x71 ; MEMORY MAPPED

.equ TWBR = 0x70 ; MEMORY MAPPED

.equ OSCCAL = 0x6f ; MEMORY MAPPED

.equ XMCRA = 0x6d ; MEMORY MAPPED

.equ XMCRB = 0x6c ; MEMORY MAPPED

.equ EICRA = 0x6a ; MEMORY MAPPED

.equ SPMCSR = 0x68 ; MEMORY MAPPED

.equ PORTG = 0x65 ; MEMORY MAPPED

.equ DDRG = 0x64 ; MEMORY MAPPED

.equ PING = 0x63 ; MEMORY MAPPED

.equ PORTF = 0x62 ; MEMORY MAPPED

.equ DDRF = 0x61 ; MEMORY MAPPED

.equ SREG = 0x3f

.equ SPL = 0x3d

.equ SPH = 0x3e

.equ XDIV = 0x3c

.equ RAMPZ = 0x3b

.equ EICRB = 0x3a

.equ EIMSK = 0x39

.equ EIFR = 0x38

.equ TIMSK = 0x37

.equ TIFR = 0x36

.equ MCUCR = 0x35

.equ MCUCSR = 0x34

.equ TCCR0 = 0x33

.equ TCNT0 = 0x32

.equ OCR0 = 0x31

.equ ASSR = 0x30

.equ TCCR1A = 0x2f

.equ TCCR1B = 0x2e

.equ TCNT1L = 0x2c

.equ TCNT1H = 0x2d

.equ OCR1AL = 0x2a

.equ OCR1AH = 0x2b

.equ OCR1BL = 0x28

.equ OCR1BH = 0x29

.equ ICR1L = 0x26

.equ ICR1H = 0x27

.equ TCCR2 = 0x25

.equ TCNT2 = 0x24

.equ OCR2 = 0x23

.equ OCDR = 0x22

.equ WDTCR = 0x21

.equ SFIOR = 0x20

.equ EEARL = 0x1e

.equ EEARH = 0x1f

.equ EEDR = 0x1d

.equ EECR = 0x1c

.equ PORTA = 0x1b

.equ DDRA = 0x1a

.equ PINA = 0x19
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.equ PORTB = 0x18

.equ DDRB = 0x17

.equ PINB = 0x16

.equ PORTC = 0x15

.equ DDRC = 0x14

.equ PINC = 0x13

.equ PORTD = 0x12

.equ DDRD = 0x11

.equ PIND = 0x10

.equ SPDR = 0x0f

.equ SPSR = 0x0e

.equ SPCR = 0x0d

.equ UDR0 = 0x0c

.equ UCSR0A = 0x0b

.equ UCSR0B = 0x0a

.equ UBRR0L = 0x09

.equ ACSR = 0x08

.equ ADMUX = 0x07

.equ ADCSRA = 0x06

.equ ADCH = 0x05

.equ ADCL = 0x04

.equ PORTE = 0x03

.equ DDRE = 0x02

.equ PINE = 0x01

.equ PINF = 0x00

; ***** BIT DEFINITIONS **************************************************

; ***** ANALOG_COMPARATOR ************

; SFIOR - Special Function IO Register

.equ ACME = 3 ; Analog Comparator Multiplexer Enable

; ACSR - Analog Comparator Control And Status Register

.equ ACIS0 = 0 ; Analog Comparator Interrupt Mode Select bit 0

.equ ACIS1 = 1 ; Analog Comparator Interrupt Mode Select bit 1

.equ ACIC = 2 ; Analog Comparator Input Capture Enable

.equ ACIE = 3 ; Analog Comparator Interrupt Enable

.equ ACI = 4 ; Analog Comparator Interrupt Flag

.equ ACO = 5 ; Analog Compare Output

.equ ACBG = 6 ; Analog Comparator Bandgap Select

.equ ACD = 7 ; Analog Comparator Disable

; ***** SPI **************************

; SPDR - SPI Data Register

.equ SPDR0 = 0 ; SPI Data Register bit 0

.equ SPDR1 = 1 ; SPI Data Register bit 1

.equ SPDR2 = 2 ; SPI Data Register bit 2

.equ SPDR3 = 3 ; SPI Data Register bit 3

.equ SPDR4 = 4 ; SPI Data Register bit 4

.equ SPDR5 = 5 ; SPI Data Register bit 5

.equ SPDR6 = 6 ; SPI Data Register bit 6

.equ SPDR7 = 7 ; SPI Data Register bit 7

; SPSR - SPI Status Register
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.equ SPI2X = 0 ; Double SPI Speed Bit

.equ WCOL = 6 ; Write Collision Flag

.equ SPIF = 7 ; SPI Interrupt Flag

; SPCR - SPI Control Register

.equ SPR0 = 0 ; SPI Clock Rate Select 0

.equ SPR1 = 1 ; SPI Clock Rate Select 1

.equ CPHA = 2 ; Clock Phase

.equ CPOL = 3 ; Clock polarity

.equ MSTR = 4 ; Master/Slave Select

.equ DORD = 5 ; Data Order

.equ SPE = 6 ; SPI Enable

.equ SPIE = 7 ; SPI Interrupt Enable

; ***** TWI **************************

; TWBR - TWI Bit Rate register

.equ I2BR = TWBR ; For compatibility

.equ TWBR0 = 0 ;

.equ TWBR1 = 1 ;

.equ TWBR2 = 2 ;

.equ TWBR3 = 3 ;

.equ TWBR4 = 4 ;

.equ TWBR5 = 5 ;

.equ TWBR6 = 6 ;

.equ TWBR7 = 7 ;

; TWCR - TWI Control Register

.equ I2CR = TWCR ; For compatibility

.equ TWIE = 0 ; TWI Interrupt Enable

.equ I2IE = TWIE ; For compatibility

.equ TWEN = 2 ; TWI Enable Bit

.equ I2EN = TWEN ; For compatibility

.equ ENI2C = TWEN ; For compatibility

.equ TWWC = 3 ; TWI Write Collition Flag

.equ I2WC = TWWC ; For compatibility

.equ TWSTO = 4 ; TWI Stop Condition Bit

.equ I2STO = TWSTO ; For compatibility

.equ TWSTA = 5 ; TWI Start Condition Bit

.equ I2STA = TWSTA ; For compatibility

.equ TWEA = 6 ; TWI Enable Acknowledge Bit

.equ I2EA = TWEA ; For compatibility

.equ TWINT = 7 ; TWI Interrupt Flag

.equ I2INT = TWINT ; For compatibility

; TWSR - TWI Status Register

.equ I2SR = TWSR ; For compatibility

.equ TWPS0 = 0 ; TWI Prescaler

.equ TWS0 = TWPS0 ; For compatibility

.equ I2GCE = TWPS0 ; For compatibility

.equ TWPS1 = 1 ; TWI Prescaler

.equ TWS1 = TWPS1 ; For compatibility

.equ TWS3 = 3 ; TWI Status

.equ I2S3 = TWS3 ; For compatibility

.equ TWS4 = 4 ; TWI Status

.equ I2S4 = TWS4 ; For compatibility
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.equ TWS5 = 5 ; TWI Status

.equ I2S5 = TWS5 ; For compatibility

.equ TWS6 = 6 ; TWI Status

.equ I2S6 = TWS6 ; For compatibility

.equ TWS7 = 7 ; TWI Status

.equ I2S7 = TWS7 ; For compatibility

; TWDR - TWI Data register

.equ I2DR = TWDR ; For compatibility

.equ TWD0 = 0 ; TWI Data Register Bit 0

.equ TWD1 = 1 ; TWI Data Register Bit 1

.equ TWD2 = 2 ; TWI Data Register Bit 2

.equ TWD3 = 3 ; TWI Data Register Bit 3

.equ TWD4 = 4 ; TWI Data Register Bit 4

.equ TWD5 = 5 ; TWI Data Register Bit 5

.equ TWD6 = 6 ; TWI Data Register Bit 6

.equ TWD7 = 7 ; TWI Data Register Bit 7

; TWAR - TWI (Slave) Address register

.equ I2AR = TWAR ; For compatibility

.equ TWGCE = 0 ; TWI General Call Recognition Enable Bit

.equ TWA0 = 1 ; TWI (Slave) Address register Bit 0

.equ TWA1 = 2 ; TWI (Slave) Address register Bit 1

.equ TWA2 = 3 ; TWI (Slave) Address register Bit 2

.equ TWA3 = 4 ; TWI (Slave) Address register Bit 3

.equ TWA4 = 5 ; TWI (Slave) Address register Bit 4

.equ TWA5 = 6 ; TWI (Slave) Address register Bit 5

.equ TWA6 = 7 ; TWI (Slave) Address register Bit 6

; ***** USART0 ***********************

; UDR0 - USART I/O Data Register

.equ UDR00 = 0 ; USART I/O Data Register bit 0

.equ UDR01 = 1 ; USART I/O Data Register bit 1

.equ UDR02 = 2 ; USART I/O Data Register bit 2

.equ UDR03 = 3 ; USART I/O Data Register bit 3

.equ UDR04 = 4 ; USART I/O Data Register bit 4

.equ UDR05 = 5 ; USART I/O Data Register bit 5

.equ UDR06 = 6 ; USART I/O Data Register bit 6

.equ UDR07 = 7 ; USART I/O Data Register bit 7

; UCSR0A - USART Control and Status Register A

.equ MPCM0 = 0 ; Multi-processor Communication Mode

.equ U2X0 = 1 ; Double the USART transmission speed

.equ UPE0 = 2 ; Parity Error

.equ DOR0 = 3 ; Data overRun

.equ FE0 = 4 ; Framing Error

.equ UDRE0 = 5 ; USART Data Register Empty

.equ TXC0 = 6 ; USART Transmit Complete

.equ RXC0 = 7 ; USART Receive Complete

; UCSR0B - USART Control and Status Register B

.equ TXB80 = 0 ; Transmit Data Bit 8

.equ RXB80 = 1 ; Receive Data Bit 8

.equ UCSZ02 = 2 ; Character Size

.equ UCSZ2 = UCSZ02 ; For compatibility
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.equ TXEN0 = 3 ; Transmitter Enable

.equ RXEN0 = 4 ; Receiver Enable

.equ UDRIE0 = 5 ; USART Data register Empty Interrupt Enable

.equ TXCIE0 = 6 ; TX Complete Interrupt Enable

.equ RXCIE0 = 7 ; RX Complete Interrupt Enable

; UCSR0C - USART Control and Status Register C

.equ UCPOL0 = 0 ; Clock Polarity

.equ UCSZ00 = 1 ; Character Size

.equ UCSZ01 = 2 ; Character Size

.equ USBS0 = 3 ; Stop Bit Select

.equ UPM00 = 4 ; Parity Mode Bit 0

.equ UPM01 = 5 ; Parity Mode Bit 1

.equ UMSEL0 = 6 ; USART Mode Select

; UBRR0H - USART Baud Rate Register High Byte

.equ UBRR8 = 0 ; USART Baud Rate Register bit 8

.equ UBRR9 = 1 ; USART Baud Rate Register bit 9

.equ UBRR10 = 2 ; USART Baud Rate Register bit 10

.equ UBRR11 = 3 ; USART Baud Rate Register bit 11

; UBRR0L - USART Baud Rate Register Low Byte

.equ UBRR0 = 0 ; USART Baud Rate Register bit 0

.equ UBRR1 = 1 ; USART Baud Rate Register bit 1

.equ UBRR2 = 2 ; USART Baud Rate Register bit 2

.equ UBRR3 = 3 ; USART Baud Rate Register bit 3

.equ UBRR4 = 4 ; USART Baud Rate Register bit 4

.equ UBRR5 = 5 ; USART Baud Rate Register bit 5

.equ UBRR6 = 6 ; USART Baud Rate Register bit 6

.equ UBRR7 = 7 ; USART Baud Rate Register bit 7

; ***** USART1 ***********************

; UDR1 - USART I/O Data Register

.equ UDR10 = 0 ; USART I/O Data Register bit 0

.equ UDR11 = 1 ; USART I/O Data Register bit 1

.equ UDR12 = 2 ; USART I/O Data Register bit 2

.equ UDR13 = 3 ; USART I/O Data Register bit 3

.equ UDR14 = 4 ; USART I/O Data Register bit 4

.equ UDR15 = 5 ; USART I/O Data Register bit 5

.equ UDR16 = 6 ; USART I/O Data Register bit 6

.equ UDR17 = 7 ; USART I/O Data Register bit 7

; UCSR1A - USART Control and Status Register A

.equ MPCM1 = 0 ; Multi-processor Communication Mode

.equ U2X1 = 1 ; Double the USART transmission speed

.equ UPE1 = 2 ; Parity Error

.equ DOR1 = 3 ; Data overRun

.equ FE1 = 4 ; Framing Error

.equ UDRE1 = 5 ; USART Data Register Empty

.equ TXC1 = 6 ; USART Transmitt Complete

.equ RXC1 = 7 ; USART Receive Complete

; UCSR1B - USART Control and Status Register B

.equ TXB81 = 0 ; Transmit Data Bit 8

.equ RXB81 = 1 ; Receive Data Bit 8
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.equ UCSZ12 = 2 ; Character Size

.equ TXEN1 = 3 ; Transmitter Enable

.equ RXEN1 = 4 ; Receiver Enable

.equ UDRIE1 = 5 ; USART Data register Empty Interrupt Enable

.equ TXCIE1 = 6 ; TX Complete Interrupt Enable

.equ RXCIE1 = 7 ; RX Complete Interrupt Enable

; UCSR1C - USART Control and Status Register C

.equ UCPOL1 = 0 ; Clock Polarity

.equ UCSZ10 = 1 ; Character Size

.equ UCSZ11 = 2 ; Character Size

.equ USBS1 = 3 ; Stop Bit Select

.equ UPM10 = 4 ; Parity Mode Bit 0

.equ UPM11 = 5 ; Parity Mode Bit 1

.equ UMSEL1 = 6 ; USART Mode Select

; UBRR1H - USART Baud Rate Register Hight Byte

;.equ UBRR8 = 0 ; USART Baud Rate Register bit 8

;.equ UBRR9 = 1 ; USART Baud Rate Register bit 9

;.equ UBRR10 = 2 ; USART Baud Rate Register bit 10

;.equ UBRR11 = 3 ; USART Baud Rate Register bit 11

; UBRR1L - USART Baud Rate Register Low Byte

;.equ UBRR0 = 0 ; USART Baud Rate Register bit 0

;.equ UBRR1 = 1 ; USART Baud Rate Register bit 1

;.equ UBRR2 = 2 ; USART Baud Rate Register bit 2

;.equ UBRR3 = 3 ; USART Baud Rate Register bit 3

;.equ UBRR4 = 4 ; USART Baud Rate Register bit 4

;.equ UBRR5 = 5 ; USART Baud Rate Register bit 5

;.equ UBRR6 = 6 ; USART Baud Rate Register bit 6

;.equ UBRR7 = 7 ; USART Baud Rate Register bit 7

; ***** CPU **************************

; SREG - Status Register

.equ SREG_C = 0 ; Carry Flag

.equ SREG_Z = 1 ; Zero Flag

.equ SREG_N = 2 ; Negative Flag

.equ SREG_V = 3 ; Two’s Complement Overflow Flag

.equ SREG_S = 4 ; Sign Bit

.equ SREG_H = 5 ; Half Carry Flag

.equ SREG_T = 6 ; Bit Copy Storage

.equ SREG_I = 7 ; Global Interrupt Enable

; MCUCR - MCU Control Register

.equ IVCE = 0 ; Interrupt Vector Change Enable

.equ IVSEL = 1 ; Interrupt Vector Select

.equ SM2 = 2 ; Sleep Mode Select

.equ SM0 = 3 ; Sleep Mode Select

.equ SM1 = 4 ; Sleep Mode Select

.equ SE = 5 ; Sleep Enable

.equ SRW10 = 6 ; External SRAM Wait State Select

.equ SRE = 7 ; External SRAM Enable

; XMCRA - External Memory Control Register A

.equ SRW11 = 1 ; Wait state select bit upper page
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.equ SRW00 = 2 ; Wait state select bit lower page

.equ SRW01 = 3 ; Wait state select bit lower page

.equ SRL0 = 4 ; Wait state page limit

.equ SRL1 = 5 ; Wait state page limit

.equ SRL2 = 6 ; Wait state page limit

; XMCRB - External Memory Control Register B

.equ XMM0 = 0 ; External Memory High Mask

.equ XMM1 = 1 ; External Memory High Mask

.equ XMM2 = 2 ; External Memory High Mask

.equ XMBK = 7 ; External Memory Bus Keeper Enable

; OSCCAL - Oscillator Calibration Value

.equ CAL0 = 0 ; Oscillator Calibration Value

.equ CAL1 = 1 ; Oscillator Calibration Value

.equ CAL2 = 2 ; Oscillator Calibration Value

.equ CAL3 = 3 ; Oscillator Calibration Value

.equ CAL4 = 4 ; Oscillator Calibration Value

.equ CAL5 = 5 ; Oscillator Calibration Value

.equ CAL6 = 6 ; Oscillator Calibration Value

.equ CAL7 = 7 ; Oscillator Calibration Value

; XDIV - XTAL Divide Control Register

.equ XDIV0 = 0 ; XTAl Divide Select Bit 0

.equ XDIV1 = 1 ; XTAl Divide Select Bit 1

.equ XDIV2 = 2 ; XTAl Divide Select Bit 2

.equ XDIV3 = 3 ; XTAl Divide Select Bit 3

.equ XDIV4 = 4 ; XTAl Divide Select Bit 4

.equ XDIV5 = 5 ; XTAl Divide Select Bit 5

.equ XDIV6 = 6 ; XTAl Divide Select Bit 6

.equ XDIVEN = 7 ; XTAL Divide Enable

; MCUCSR - MCU Control And Status Register

.equ PORF = 0 ; Power-on reset flag

.equ EXTRF = 1 ; External Reset Flag

.equ BORF = 2 ; Brown-out Reset Flag

.equ WDRF = 3 ; Watchdog Reset Flag

.equ JTRF = 4 ; JTAG Reset Flag

.equ JTD = 7 ; JTAG Interface Disable

; RAMPZ - RAM Page Z Select Register

.equ RAMPZ0 = 0 ; RAM Page Z Select Register Bit 0

; ***** BOOT_LOAD ********************

; SPMCSR - Store Program Memory Control Register

.equ SPMCR = SPMCSR ; For compatibility

.equ SPMEN = 0 ; Store Program Memory Enable

.equ PGERS = 1 ; Page Erase

.equ PGWRT = 2 ; Page Write

.equ BLBSET = 3 ; Boot Lock Bit Set

.equ RWWSRE = 4 ; Read While Write section read enable

.equ ASRE = RWWSRE ; For compatibility

.equ RWWSB = 6 ; Read While Write Section Busy

.equ ASB = RWWSB ; For compatibility

.equ SPMIE = 7 ; SPM Interrupt Enable
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; ***** JTAG *************************

; OCDR - On-Chip Debug Related Register in I/O Memory

.equ OCDR0 = 0 ; On-Chip Debug Register Bit 0

.equ OCDR1 = 1 ; On-Chip Debug Register Bit 1

.equ OCDR2 = 2 ; On-Chip Debug Register Bit 2

.equ OCDR3 = 3 ; On-Chip Debug Register Bit 3

.equ OCDR4 = 4 ; On-Chip Debug Register Bit 4

.equ OCDR5 = 5 ; On-Chip Debug Register Bit 5

.equ OCDR6 = 6 ; On-Chip Debug Register Bit 6

.equ OCDR7 = 7 ; On-Chip Debug Register Bit 7

.equ IDRD = OCDR7 ; For compatibility

; MCUCSR - MCU Control And Status Register

;.equ JTRF = 4 ; JTAG Reset Flag

;.equ JTD = 7 ; JTAG Interface Disable

; ***** MISC *************************

; SFIOR - Special Function IO Register

.equ PSR321 = 0 ; Prescaler Reset Timer/Counter3, Timer/Counter2, and Timer/Counter1

.equ PSR1 = PSR321 ; For compatibility

.equ PSR2 = PSR321 ; For compatibility

.equ PSR3 = PSR321 ; For compatibility

.equ PSR0 = 1 ; Prescaler Reset Timer/Counter0

.equ PUD = 2 ; Pull Up Disable

;.equ ACME = 3 ; Analog Comparator Multiplexer Enable

.equ TSM = 7 ; Timer/Counter Synchronization Mode

; ***** EXTERNAL_INTERRUPT ***********

; EICRA - External Interrupt Control Register A

.equ ISC00 = 0 ; External Interrupt Sense Control Bit

.equ ISC01 = 1 ; External Interrupt Sense Control Bit

.equ ISC10 = 2 ; External Interrupt Sense Control Bit

.equ ISC11 = 3 ; External Interrupt Sense Control Bit

.equ ISC20 = 4 ; External Interrupt Sense Control Bit

.equ ISC21 = 5 ; External Interrupt Sense Control Bit

.equ ISC30 = 6 ; External Interrupt Sense Control Bit

.equ ISC31 = 7 ; External Interrupt Sense Control Bit

; EICRB - External Interrupt Control Register B

.equ ISC40 = 0 ; External Interrupt 7-4 Sense Control Bit

.equ ISC41 = 1 ; External Interrupt 7-4 Sense Control Bit

.equ ISC50 = 2 ; External Interrupt 7-4 Sense Control Bit

.equ ISC51 = 3 ; External Interrupt 7-4 Sense Control Bit

.equ ISC60 = 4 ; External Interrupt 7-4 Sense Control Bit

.equ ISC61 = 5 ; External Interrupt 7-4 Sense Control Bit

.equ ISC70 = 6 ; External Interrupt 7-4 Sense Control Bit

.equ ISC71 = 7 ; External Interrupt 7-4 Sense Control Bit

; EIMSK - External Interrupt Mask Register

.equ GICR = EIMSK ; For compatibility

.equ GIMSK = EIMSK ; For compatibility

.equ INT0 = 0 ; External Interrupt Request 0 Enable
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.equ INT1 = 1 ; External Interrupt Request 1 Enable

.equ INT2 = 2 ; External Interrupt Request 2 Enable

.equ INT3 = 3 ; External Interrupt Request 3 Enable

.equ INT4 = 4 ; External Interrupt Request 4 Enable

.equ INT5 = 5 ; External Interrupt Request 5 Enable

.equ INT6 = 6 ; External Interrupt Request 6 Enable

.equ INT7 = 7 ; External Interrupt Request 7 Enable

; EIFR - External Interrupt Flag Register

.equ GIFR = EIFR ; For compatibility

.equ INTF0 = 0 ; External Interrupt Flag 0

.equ INTF1 = 1 ; External Interrupt Flag 1

.equ INTF2 = 2 ; External Interrupt Flag 2

.equ INTF3 = 3 ; External Interrupt Flag 3

.equ INTF4 = 4 ; External Interrupt Flag 4

.equ INTF5 = 5 ; External Interrupt Flag 5

.equ INTF6 = 6 ; External Interrupt Flag 6

.equ INTF7 = 7 ; External Interrupt Flag 7

; ***** EEPROM ***********************

; EEDR - EEPROM Data Register

.equ EEDR0 = 0 ; EEPROM Data Register bit 0

.equ EEDR1 = 1 ; EEPROM Data Register bit 1

.equ EEDR2 = 2 ; EEPROM Data Register bit 2

.equ EEDR3 = 3 ; EEPROM Data Register bit 3

.equ EEDR4 = 4 ; EEPROM Data Register bit 4

.equ EEDR5 = 5 ; EEPROM Data Register bit 5

.equ EEDR6 = 6 ; EEPROM Data Register bit 6

.equ EEDR7 = 7 ; EEPROM Data Register bit 7

; EECR - EEPROM Control Register

.equ EERE = 0 ; EEPROM Read Enable

.equ EEWE = 1 ; EEPROM Write Enable

.equ EEMWE = 2 ; EEPROM Master Write Enable

.equ EERIE = 3 ; EEPROM Ready Interrupt Enable

; ***** PORTA ************************

; PORTA - Port A Data Register

.equ PORTA0 = 0 ; Port A Data Register bit 0

.equ PA0 = 0 ; For compatibility

.equ PORTA1 = 1 ; Port A Data Register bit 1

.equ PA1 = 1 ; For compatibility

.equ PORTA2 = 2 ; Port A Data Register bit 2

.equ PA2 = 2 ; For compatibility

.equ PORTA3 = 3 ; Port A Data Register bit 3

.equ PA3 = 3 ; For compatibility

.equ PORTA4 = 4 ; Port A Data Register bit 4

.equ PA4 = 4 ; For compatibility

.equ PORTA5 = 5 ; Port A Data Register bit 5

.equ PA5 = 5 ; For compatibility

.equ PORTA6 = 6 ; Port A Data Register bit 6

.equ PA6 = 6 ; For compatibility

.equ PORTA7 = 7 ; Port A Data Register bit 7

.equ PA7 = 7 ; For compatibility
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; DDRA - Port A Data Direction Register

.equ DDA0 = 0 ; Data Direction Register, Port A, bit 0

.equ DDA1 = 1 ; Data Direction Register, Port A, bit 1

.equ DDA2 = 2 ; Data Direction Register, Port A, bit 2

.equ DDA3 = 3 ; Data Direction Register, Port A, bit 3

.equ DDA4 = 4 ; Data Direction Register, Port A, bit 4

.equ DDA5 = 5 ; Data Direction Register, Port A, bit 5

.equ DDA6 = 6 ; Data Direction Register, Port A, bit 6

.equ DDA7 = 7 ; Data Direction Register, Port A, bit 7

; PINA - Port A Input Pins

.equ PINA0 = 0 ; Input Pins, Port A bit 0

.equ PINA1 = 1 ; Input Pins, Port A bit 1

.equ PINA2 = 2 ; Input Pins, Port A bit 2

.equ PINA3 = 3 ; Input Pins, Port A bit 3

.equ PINA4 = 4 ; Input Pins, Port A bit 4

.equ PINA5 = 5 ; Input Pins, Port A bit 5

.equ PINA6 = 6 ; Input Pins, Port A bit 6

.equ PINA7 = 7 ; Input Pins, Port A bit 7

; ***** PORTB ************************

; PORTB - Port B Data Register

.equ PORTB0 = 0 ; Port B Data Register bit 0

.equ PB0 = 0 ; For compatibility

.equ PORTB1 = 1 ; Port B Data Register bit 1

.equ PB1 = 1 ; For compatibility

.equ PORTB2 = 2 ; Port B Data Register bit 2

.equ PB2 = 2 ; For compatibility

.equ PORTB3 = 3 ; Port B Data Register bit 3

.equ PB3 = 3 ; For compatibility

.equ PORTB4 = 4 ; Port B Data Register bit 4

.equ PB4 = 4 ; For compatibility

.equ PORTB5 = 5 ; Port B Data Register bit 5

.equ PB5 = 5 ; For compatibility

.equ PORTB6 = 6 ; Port B Data Register bit 6

.equ PB6 = 6 ; For compatibility

.equ PORTB7 = 7 ; Port B Data Register bit 7

.equ PB7 = 7 ; For compatibility

; DDRB - Port B Data Direction Register

.equ DDB0 = 0 ; Port B Data Direction Register bit 0

.equ DDB1 = 1 ; Port B Data Direction Register bit 1

.equ DDB2 = 2 ; Port B Data Direction Register bit 2

.equ DDB3 = 3 ; Port B Data Direction Register bit 3

.equ DDB4 = 4 ; Port B Data Direction Register bit 4

.equ DDB5 = 5 ; Port B Data Direction Register bit 5

.equ DDB6 = 6 ; Port B Data Direction Register bit 6

.equ DDB7 = 7 ; Port B Data Direction Register bit 7

; PINB - Port B Input Pins

.equ PINB0 = 0 ; Port B Input Pins bit 0

.equ PINB1 = 1 ; Port B Input Pins bit 1

.equ PINB2 = 2 ; Port B Input Pins bit 2

.equ PINB3 = 3 ; Port B Input Pins bit 3
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.equ PINB4 = 4 ; Port B Input Pins bit 4

.equ PINB5 = 5 ; Port B Input Pins bit 5

.equ PINB6 = 6 ; Port B Input Pins bit 6

.equ PINB7 = 7 ; Port B Input Pins bit 7

; ***** PORTC ************************

; PORTC - Port C Data Register

.equ PORTC0 = 0 ; Port C Data Register bit 0

.equ PC0 = 0 ; For compatibility

.equ PORTC1 = 1 ; Port C Data Register bit 1

.equ PC1 = 1 ; For compatibility

.equ PORTC2 = 2 ; Port C Data Register bit 2

.equ PC2 = 2 ; For compatibility

.equ PORTC3 = 3 ; Port C Data Register bit 3

.equ PC3 = 3 ; For compatibility

.equ PORTC4 = 4 ; Port C Data Register bit 4

.equ PC4 = 4 ; For compatibility

.equ PORTC5 = 5 ; Port C Data Register bit 5

.equ PC5 = 5 ; For compatibility

.equ PORTC6 = 6 ; Port C Data Register bit 6

.equ PC6 = 6 ; For compatibility

.equ PORTC7 = 7 ; Port C Data Register bit 7

.equ PC7 = 7 ; For compatibility

; DDRC - Port C Data Direction Register

.equ DDC0 = 0 ; Port C Data Direction Register bit 0

.equ DDC1 = 1 ; Port C Data Direction Register bit 1

.equ DDC2 = 2 ; Port C Data Direction Register bit 2

.equ DDC3 = 3 ; Port C Data Direction Register bit 3

.equ DDC4 = 4 ; Port C Data Direction Register bit 4

.equ DDC5 = 5 ; Port C Data Direction Register bit 5

.equ DDC6 = 6 ; Port C Data Direction Register bit 6

.equ DDC7 = 7 ; Port C Data Direction Register bit 7

; PINC - Port C Input Pins

.equ PINC0 = 0 ; Port C Input Pins bit 0

.equ PINC1 = 1 ; Port C Input Pins bit 1

.equ PINC2 = 2 ; Port C Input Pins bit 2

.equ PINC3 = 3 ; Port C Input Pins bit 3

.equ PINC4 = 4 ; Port C Input Pins bit 4

.equ PINC5 = 5 ; Port C Input Pins bit 5

.equ PINC6 = 6 ; Port C Input Pins bit 6

.equ PINC7 = 7 ; Port C Input Pins bit 7

; ***** PORTD ************************

; PORTD - Port D Data Register

.equ PORTD0 = 0 ; Port D Data Register bit 0

.equ PD0 = 0 ; For compatibility

.equ PORTD1 = 1 ; Port D Data Register bit 1

.equ PD1 = 1 ; For compatibility

.equ PORTD2 = 2 ; Port D Data Register bit 2

.equ PD2 = 2 ; For compatibility

.equ PORTD3 = 3 ; Port D Data Register bit 3

.equ PD3 = 3 ; For compatibility
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.equ PORTD4 = 4 ; Port D Data Register bit 4

.equ PD4 = 4 ; For compatibility

.equ PORTD5 = 5 ; Port D Data Register bit 5

.equ PD5 = 5 ; For compatibility

.equ PORTD6 = 6 ; Port D Data Register bit 6

.equ PD6 = 6 ; For compatibility

.equ PORTD7 = 7 ; Port D Data Register bit 7

.equ PD7 = 7 ; For compatibility

; DDRD - Port D Data Direction Register

.equ DDD0 = 0 ; Port D Data Direction Register bit 0

.equ DDD1 = 1 ; Port D Data Direction Register bit 1

.equ DDD2 = 2 ; Port D Data Direction Register bit 2

.equ DDD3 = 3 ; Port D Data Direction Register bit 3

.equ DDD4 = 4 ; Port D Data Direction Register bit 4

.equ DDD5 = 5 ; Port D Data Direction Register bit 5

.equ DDD6 = 6 ; Port D Data Direction Register bit 6

.equ DDD7 = 7 ; Port D Data Direction Register bit 7

; PIND - Port D Input Pins

.equ PIND0 = 0 ; Port D Input Pins bit 0

.equ PIND1 = 1 ; Port D Input Pins bit 1

.equ PIND2 = 2 ; Port D Input Pins bit 2

.equ PIND3 = 3 ; Port D Input Pins bit 3

.equ PIND4 = 4 ; Port D Input Pins bit 4

.equ PIND5 = 5 ; Port D Input Pins bit 5

.equ PIND6 = 6 ; Port D Input Pins bit 6

.equ PIND7 = 7 ; Port D Input Pins bit 7

; ***** PORTE ************************

; PORTE - Data Register, Port E

.equ PORTE0 = 0 ;

.equ PE0 = 0 ; For compatibility

.equ PORTE1 = 1 ;

.equ PE1 = 1 ; For compatibility

.equ PORTE2 = 2 ;

.equ PE2 = 2 ; For compatibility

.equ PORTE3 = 3 ;

.equ PE3 = 3 ; For compatibility

.equ PORTE4 = 4 ;

.equ PE4 = 4 ; For compatibility

.equ PORTE5 = 5 ;

.equ PE5 = 5 ; For compatibility

.equ PORTE6 = 6 ;

.equ PE6 = 6 ; For compatibility

.equ PORTE7 = 7 ;

.equ PE7 = 7 ; For compatibility

; DDRE - Data Direction Register, Port E

.equ DDE0 = 0 ;

.equ DDE1 = 1 ;

.equ DDE2 = 2 ;

.equ DDE3 = 3 ;

.equ DDE4 = 4 ;

.equ DDE5 = 5 ;
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.equ DDE6 = 6 ;

.equ DDE7 = 7 ;

; PINE - Input Pins, Port E

.equ PINE0 = 0 ;

.equ PINE1 = 1 ;

.equ PINE2 = 2 ;

.equ PINE3 = 3 ;

.equ PINE4 = 4 ;

.equ PINE5 = 5 ;

.equ PINE6 = 6 ;

.equ PINE7 = 7 ;

; ***** PORTF ************************

; PORTF - Data Register, Port F

.equ PORTF0 = 0 ;

.equ PF0 = 0 ; For compatibility

.equ PORTF1 = 1 ;

.equ PF1 = 1 ; For compatibility

.equ PORTF2 = 2 ;

.equ PF2 = 2 ; For compatibility

.equ PORTF3 = 3 ;

.equ PF3 = 3 ; For compatibility

.equ PORTF4 = 4 ;

.equ PF4 = 4 ; For compatibility

.equ PORTF5 = 5 ;

.equ PF5 = 5 ; For compatibility

.equ PORTF6 = 6 ;

.equ PF6 = 6 ; For compatibility

.equ PORTF7 = 7 ;

.equ PF7 = 7 ; For compatibility

; DDRF - Data Direction Register, Port F

.equ DDF0 = 0 ;

.equ DDF1 = 1 ;

.equ DDF2 = 2 ;

.equ DDF3 = 3 ;

.equ DDF4 = 4 ;

.equ DDF5 = 5 ;

.equ DDF6 = 6 ;

.equ DDF7 = 7 ;

; PINF - Input Pins, Port F

.equ PINF0 = 0 ;

.equ PINF1 = 1 ;

.equ PINF2 = 2 ;

.equ PINF3 = 3 ;

.equ PINF4 = 4 ;

.equ PINF5 = 5 ;

.equ PINF6 = 6 ;

.equ PINF7 = 7 ;

; ***** PORTG ************************

; PORTG - Data Register, Port G
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.equ PORTG0 = 0 ;

.equ PG0 = 0 ; For compatibility

.equ PORTG1 = 1 ;

.equ PG1 = 1 ; For compatibility

.equ PORTG2 = 2 ;

.equ PG2 = 2 ; For compatibility

.equ PORTG3 = 3 ;

.equ PG3 = 3 ; For compatibility

.equ PORTG4 = 4 ;

.equ PG4 = 4 ; For compatibility

; DDRG - Data Direction Register, Port G

.equ DDG0 = 0 ;

.equ DDG1 = 1 ;

.equ DDG2 = 2 ;

.equ DDG3 = 3 ;

.equ DDG4 = 4 ;

; PING - Input Pins, Port G

.equ PING0 = 0 ;

.equ PING1 = 1 ;

.equ PING2 = 2 ;

.equ PING3 = 3 ;

.equ PING4 = 4 ;

; ***** TIMER_COUNTER_0 **************

; TCCR0 - Timer/Counter Control Register

.equ CS00 = 0 ; Clock Select 0

.equ CS01 = 1 ; Clock Select 1

.equ CS02 = 2 ; Clock Select 2

.equ WGM01 = 3 ; Waveform Generation Mode 1

.equ CTC0 = WGM01 ; For compatibility

.equ COM00 = 4 ; Compare match Output Mode 0

.equ COM01 = 5 ; Compare Match Output Mode 1

.equ WGM00 = 6 ; Waveform Generation Mode 0

.equ PWM0 = WGM00 ; For compatibility

.equ FOC0 = 7 ; Force Output Compare

; TCNT0 - Timer/Counter Register

.equ TCNT0_0 = 0 ;

.equ TCNT0_1 = 1 ;

.equ TCNT0_2 = 2 ;

.equ TCNT0_3 = 3 ;

.equ TCNT0_4 = 4 ;

.equ TCNT0_5 = 5 ;

.equ TCNT0_6 = 6 ;

.equ TCNT0_7 = 7 ;

; OCR0 - Output Compare Register

.equ OCR0_0 = 0 ;

.equ OCR0_1 = 1 ;

.equ OCR0_2 = 2 ;

.equ OCR0_3 = 3 ;

.equ OCR0_4 = 4 ;

.equ OCR0_5 = 5 ;
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.equ OCR0_6 = 6 ;

.equ OCR0_7 = 7 ;

; ASSR - Asynchronus Status Register

.equ TCR0UB = 0 ; Timer/Counter Control Register 0 Update Busy

.equ OCR0UB = 1 ; Output Compare register 0 Busy

.equ TCN0UB = 2 ; Timer/Counter0 Update Busy

.equ AS0 = 3 ; Asynchronus Timer/Counter 0

; TIMSK - Timer/Counter Interrupt Mask Register

.equ TOIE0 = 0 ; Timer/Counter0 Overflow Interrupt Enable

.equ OCIE0 = 1 ; Timer/Counter0 Output Compare Match Interrupt register

; TIFR - Timer/Counter Interrupt Flag register

.equ TOV0 = 0 ; Timer/Counter0 Overflow Flag

.equ OCF0 = 1 ; Output Compare Flag 0

; SFIOR - Special Function IO Register

;.equ PSR0 = 1 ; Prescaler Reset Timer/Counter0

;.equ TSM = 7 ; Timer/Counter Synchronization Mode

; ***** TIMER_COUNTER_1 **************

; TIMSK - Timer/Counter Interrupt Mask Register

.equ TOIE1 = 2 ; Timer/Counter1 Overflow Interrupt Enable

.equ OCIE1B = 3 ; Timer/Counter1 Output CompareB Match Interrupt Enable

.equ OCIE1A = 4 ; Timer/Counter1 Output CompareA Match Interrupt Enable

.equ TICIE1 = 5 ; Timer/Counter1 Input Capture Interrupt Enable

; ETIMSK - Extended Timer/Counter Interrupt Mask Register

.equ OCIE1C = 0 ; Timer/Counter 1, Output Compare Match C Interrupt Enable

; TIFR - Timer/Counter Interrupt Flag register

.equ TOV1 = 2 ; Timer/Counter1 Overflow Flag

.equ OCF1B = 3 ; Output Compare Flag 1B

.equ OCF1A = 4 ; Output Compare Flag 1A

.equ ICF1 = 5 ; Input Capture Flag 1

; ETIFR - Extended Timer/Counter Interrupt Flag register

.equ OCF1C = 0 ; Timer/Counter 1, Output Compare C Match Flag

; SFIOR - Special Function IO Register

;.equ PSR321 = 0 ; Prescaler Reset, T/C3, T/C2, T/C1

;.equ TSM = 7 ; Timer/Counter Synchronization Mode

; TCCR1A - Timer/Counter1 Control Register A

.equ WGM10 = 0 ; Waveform Generation Mode Bit 0

.equ PWM10 = WGM10 ; For compatibility

.equ WGM11 = 1 ; Waveform Generation Mode Bit 1

.equ PWM11 = WGM11 ; For compatibility

.equ COM1C0 = 2 ; Compare Output Mode 1C, bit 0

.equ COM1C1 = 3 ; Compare Output Mode 1C, bit 1

.equ COM1B0 = 4 ; Compare Output Mode 1B, bit 0

.equ COM1B1 = 5 ; Compare Output Mode 1B, bit 1

.equ COM1A0 = 6 ; Compare Ouput Mode 1A, bit 0

.equ COM1A1 = 7 ; Compare Output Mode 1A, bit 1
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; TCCR1B - Timer/Counter1 Control Register B

.equ CS10 = 0 ; Clock Select bit 0

.equ CS11 = 1 ; Clock Select 1 bit 1

.equ CS12 = 2 ; Clock Select1 bit 2

.equ WGM12 = 3 ; Waveform Generation Mode

.equ CTC10 = WGM12 ; For compatibility

.equ WGM13 = 4 ; Waveform Generation Mode

.equ CTC11 = WGM13 ; For compatibility

.equ ICES1 = 6 ; Input Capture 1 Edge Select

.equ ICNC1 = 7 ; Input Capture 1 Noise Canceler

; TCCR1C - Timer/Counter1 Control Register C

.equ FOC1C = 5 ; Force Output Compare for channel C

.equ FOC1B = 6 ; Force Output Compare for channel B

.equ FOC1A = 7 ; Force Output Compare for channel A

; ***** TIMER_COUNTER_2 **************

; TCCR2 - Timer/Counter Control Register

.equ CS20 = 0 ; Clock Select

.equ CS21 = 1 ; Clock Select

.equ CS22 = 2 ; Clock Select

.equ WGM21 = 3 ; Waveform Generation Mode

.equ CTC2 = WGM21 ; For compatibility

.equ COM20 = 4 ; Compare Match Output Mode

.equ COM21 = 5 ; Compare Match Output Mode

.equ WGM20 = 6 ; Wafeform Generation Mode

.equ PWM2 = WGM20 ; For compatibility

.equ FOC2 = 7 ; Force Output Compare

; TCNT2 - Timer/Counter Register

.equ TCNT2_0 = 0 ; Timer/Counter Register Bit 0

.equ TCNT2_1 = 1 ; Timer/Counter Register Bit 1

.equ TCNT2_2 = 2 ; Timer/Counter Register Bit 2

.equ TCNT2_3 = 3 ; Timer/Counter Register Bit 3

.equ TCNT2_4 = 4 ; Timer/Counter Register Bit 4

.equ TCNT2_5 = 5 ; Timer/Counter Register Bit 5

.equ TCNT2_6 = 6 ; Timer/Counter Register Bit 6

.equ TCNT2_7 = 7 ; Timer/Counter Register Bit 7

; OCR2 - Output Compare Register

.equ OCR2_0 = 0 ; Output Compare Register Bit 0

.equ OCR2_1 = 1 ; Output Compare Register Bit 1

.equ OCR2_2 = 2 ; Output Compare Register Bit 2

.equ OCR2_3 = 3 ; Output Compare Register Bit 3

.equ OCR2_4 = 4 ; Output Compare Register Bit 4

.equ OCR2_5 = 5 ; Output Compare Register Bit 5

.equ OCR2_6 = 6 ; Output Compare Register Bit 6

.equ OCR2_7 = 7 ; Output Compare Register Bit 7

; TIMSK -

.equ TOIE2 = 6 ;

.equ OCIE2 = 7 ;

; TIFR - Timer/Counter Interrupt Flag Register
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.equ TOV2 = 6 ; Timer/Counter2 Overflow Flag

.equ OCF2 = 7 ; Output Compare Flag 2

; ***** TIMER_COUNTER_3 **************

; ETIMSK - Extended Timer/Counter Interrupt Mask Register

.equ OCIE3C = 1 ; Timer/Counter3, Output Compare Match Interrupt Enable

.equ TOIE3 = 2 ; Timer/Counter3 Overflow Interrupt Enable

.equ OCIE3B = 3 ; Timer/Counter3 Output CompareB Match Interrupt Enable

.equ OCIE3A = 4 ; Timer/Counter3 Output CompareA Match Interrupt Enable

.equ TICIE3 = 5 ; Timer/Counter3 Input Capture Interrupt Enable

; ETIFR - Extended Timer/Counter Interrupt Flag register

.equ OCF3C = 1 ; Timer/Counter3 Output Compare C Match Flag

.equ TOV3 = 2 ; Timer/Counter3 Overflow Flag

.equ OCF3B = 3 ; Output Compare Flag 1B

.equ OCF3A = 4 ; Output Compare Flag 1A

.equ ICF3 = 5 ; Input Capture Flag 1

; SFIOR - Special Function IO Register

;.equ PSR321 = 0 ; Prescaler Reset, T/C3, T/C2, T/C1

;.equ PSR1 = PSR321 ; For compatibility

;.equ PSR2 = PSR321 ; For compatibility

;.equ TSM = 7 ; Timer/Counter Synchronization Mode

; TCCR3A - Timer/Counter3 Control Register A

.equ WGM30 = 0 ; Waveform Generation Mode Bit 0

.equ PWM30 = WGM30 ; For compatibility

.equ WGM31 = 1 ; Waveform Generation Mode Bit 1

.equ PWM31 = WGM31 ; For compatibility

.equ COM3C0 = 2 ; Compare Output Mode 3C, bit 0

.equ COM3C1 = 3 ; Compare Output Mode 3C, bit 1

.equ COM3B0 = 4 ; Compare Output Mode 3B, bit 0

.equ COM3B1 = 5 ; Compare Output Mode 3B, bit 1

.equ COM3A0 = 6 ; Comparet Ouput Mode 3A, bit 0

.equ COM3A1 = 7 ; Compare Output Mode 3A, bit 1

; TCCR3B - Timer/Counter3 Control Register B

.equ CS30 = 0 ; Clock Select 3 bit 0

.equ CS31 = 1 ; Clock Select 3 bit 1

.equ CS32 = 2 ; Clock Select3 bit 2

.equ WGM32 = 3 ; Waveform Generation Mode

.equ CTC30 = WGM32 ; For compatibility

.equ WGM33 = 4 ; Waveform Generation Mode

.equ CTC31 = WGM33 ; For compatibility

.equ ICES3 = 6 ; Input Capture 3 Edge Select

.equ ICNC3 = 7 ; Input Capture 3 Noise Canceler

; TCCR3C - Timer/Counter3 Control Register C

.equ FOC3C = 5 ; Force Output Compare for channel C

.equ FOC3B = 6 ; Force Output Compare for channel B

.equ FOC3A = 7 ; Force Output Compare for channel A

; TCNT3L - Timer/Counter3 Low Byte

.equ TCN3L0 = 0 ; Timer/Counter 3 bit 0

.equ TCN3L1 = 1 ; Timer/Counter 3 bit 1
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.equ TCN3L2 = 2 ; Timer/Counter 3 bit 2

.equ TCN3L3 = 3 ; Timer/Counter 3 bit 3

.equ TCN3L4 = 4 ; Timer/Counter 3 bit 4

.equ TCN3L5 = 5 ; Timer/Counter 3 bit 5

.equ TCN3L6 = 6 ; Timer/Counter 3 bit 6

.equ TCN3L7 = 7 ; Timer/Counter 3 bit 7

; ***** WATCHDOG *********************

; WDTCR - Watchdog Timer Control Register

.equ WDTCSR = WDTCR ; For compatibility

.equ WDP0 = 0 ; Watch Dog Timer Prescaler bit 0

.equ WDP1 = 1 ; Watch Dog Timer Prescaler bit 1

.equ WDP2 = 2 ; Watch Dog Timer Prescaler bit 2

.equ WDE = 3 ; Watch Dog Enable

.equ WDCE = 4 ; Watchdog Change Enable

.equ WDTOE = WDCE ; For compatibility

; ***** AD_CONVERTER *****************

; ADMUX - The ADC multiplexer Selection Register

.equ MUX0 = 0 ; Analog Channel and Gain Selection Bits

.equ MUX1 = 1 ; Analog Channel and Gain Selection Bits

.equ MUX2 = 2 ; Analog Channel and Gain Selection Bits

.equ MUX3 = 3 ; Analog Channel and Gain Selection Bits

.equ MUX4 = 4 ; Analog Channel and Gain Selection Bits

.equ ADLAR = 5 ; Left Adjust Result

.equ REFS0 = 6 ; Reference Selection Bit 0

.equ REFS1 = 7 ; Reference Selection Bit 1

; ADCSRA - The ADC Control and Status register

.equ ADCSR = ADCSRA ; For compatibility

.equ ADPS0 = 0 ; ADC Prescaler Select Bits

.equ ADPS1 = 1 ; ADC Prescaler Select Bits

.equ ADPS2 = 2 ; ADC Prescaler Select Bits

.equ ADIE = 3 ; ADC Interrupt Enable

.equ ADIF = 4 ; ADC Interrupt Flag

.equ ADFR = 5 ; ADC Free Running Select

.equ ADSC = 6 ; ADC Start Conversion

.equ ADEN = 7 ; ADC Enable

; ADCH - ADC Data Register High Byte

.equ ADCH0 = 0 ; ADC Data Register High Byte Bit 0

.equ ADCH1 = 1 ; ADC Data Register High Byte Bit 1

.equ ADCH2 = 2 ; ADC Data Register High Byte Bit 2

.equ ADCH3 = 3 ; ADC Data Register High Byte Bit 3

.equ ADCH4 = 4 ; ADC Data Register High Byte Bit 4

.equ ADCH5 = 5 ; ADC Data Register High Byte Bit 5

.equ ADCH6 = 6 ; ADC Data Register High Byte Bit 6

.equ ADCH7 = 7 ; ADC Data Register High Byte Bit 7

; ADCL - ADC Data Register Low Byte

.equ ADCL0 = 0 ; ADC Data Register Low Byte Bit 0

.equ ADCL1 = 1 ; ADC Data Register Low Byte Bit 1

.equ ADCL2 = 2 ; ADC Data Register Low Byte Bit 2

.equ ADCL3 = 3 ; ADC Data Register Low Byte Bit 3
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.equ ADCL4 = 4 ; ADC Data Register Low Byte Bit 4

.equ ADCL5 = 5 ; ADC Data Register Low Byte Bit 5

.equ ADCL6 = 6 ; ADC Data Register Low Byte Bit 6

.equ ADCL7 = 7 ; ADC Data Register Low Byte Bit 7

; ***** LOCKSBITS ********************************************************

.equ LB1 = 0 ; Lock bit

.equ LB2 = 1 ; Lock bit

.equ BLB01 = 2 ; Boot Lock bit

.equ BLB02 = 3 ; Boot Lock bit

.equ BLB11 = 4 ; Boot lock bit

.equ BLB12 = 5 ; Boot lock bit

; ***** FUSES ************************************************************

; LOW fuse bits

.equ CKSEL0 = 0 ; Select Clock Source

.equ CKSEL1 = 1 ; Select Clock Source

.equ CKSEL2 = 2 ; Select Clock Source

.equ CKSEL3 = 3 ; Select Clock Source

.equ SUT0 = 4 ; Select start-up time

.equ SUT1 = 5 ; Select start-up time

.equ BODEN = 6 ; Brown out detector enable

.equ BODLEVEL = 7 ; Brown out detector trigger level

; HIGH fuse bits

.equ BOOTRST = 0 ; Select Reset Vector

.equ BOOTSZ0 = 1 ; Select Boot Size

.equ BOOTSZ1 = 2 ; Select Boot Size

.equ EESAVE = 3 ; EEPROM memory is preserved through chip erase

.equ CKOPT = 4 ; Oscillator Options

.equ SPIEN = 5 ; Enable Serial programming and Data Downloading

.equ JTAGEN = 6 ; Enable JTAG

.equ OCDEN = 7 ; Enable OCD

; EXTENDED fuse bits

.equ WDTON = 0 ; Watchdog timer always on

.equ M103C = 1 ; ATmega103 compatibility mode

; ***** CPU REGISTER DEFINITIONS *****************************************

.def XH = r27

.def XL = r26

.def YH = r29

.def YL = r28

.def ZH = r31

.def ZL = r30

; ***** DATA MEMORY DECLARATIONS *****************************************

.equ FLASHEND = 0xffff ; Note: Word address

.equ IOEND = 0x00ff
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.equ SRAM_START = 0x0100

.equ SRAM_SIZE = 4096

.equ RAMEND = 0x10ff

.equ XRAMEND = 0xffff

.equ E2END = 0x0fff

.equ EEPROMEND = 0x0fff

.equ EEADRBITS = 12

#pragma AVRPART MEMORY PROG_FLASH 131072

#pragma AVRPART MEMORY EEPROM 4096

#pragma AVRPART MEMORY INT_SRAM SIZE 4096

#pragma AVRPART MEMORY INT_SRAM START_ADDR 0x100

; ***** BOOTLOADER DECLARATIONS ******************************************

.equ NRWW_START_ADDR = 0xf000

.equ NRWW_STOP_ADDR = 0xffff

.equ RWW_START_ADDR = 0x0

.equ RWW_STOP_ADDR = 0xefff

.equ PAGESIZE = 128

.equ FIRSTBOOTSTART = 0xfe00

.equ SECONDBOOTSTART = 0xfc00

.equ THIRDBOOTSTART = 0xf800

.equ FOURTHBOOTSTART = 0xf000

.equ SMALLBOOTSTART = FIRSTBOOTSTART

.equ LARGEBOOTSTART = FOURTHBOOTSTART

; ***** INTERRUPT VECTORS ************************************************

.equ INT0addr = 0x0002 ; External Interrupt Request 0

.equ INT1addr = 0x0004 ; External Interrupt Request 1

.equ INT2addr = 0x0006 ; External Interrupt Request 2

.equ INT3addr = 0x0008 ; External Interrupt Request 3

.equ INT4addr = 0x000a ; External Interrupt Request 4

.equ INT5addr = 0x000c ; External Interrupt Request 5

.equ INT6addr = 0x000e ; External Interrupt Request 6

.equ INT7addr = 0x0010 ; External Interrupt Request 7

.equ OC2addr = 0x0012 ; Timer/Counter2 Compare Match

.equ OVF2addr = 0x0014 ; Timer/Counter2 Overflow

.equ ICP1addr = 0x0016 ; Timer/Counter1 Capture Event

.equ OC1Aaddr = 0x0018 ; Timer/Counter1 Compare Match A

.equ OC1Baddr = 0x001a ; Timer/Counter Compare Match B

.equ OVF1addr = 0x001c ; Timer/Counter1 Overflow

.equ OC0addr = 0x001e ; Timer/Counter0 Compare Match

.equ OVF0addr = 0x0020 ; Timer/Counter0 Overflow

.equ SPIaddr = 0x0022 ; SPI Serial Transfer Complete

.equ URXC0addr = 0x0024 ; USART0, Rx Complete

.equ UDRE0addr = 0x0026 ; USART0 Data Register Empty

.equ UTXC0addr = 0x0028 ; USART0, Tx Complete

.equ ADCCaddr = 0x002a ; ADC Conversion Complete

.equ ERDYaddr = 0x002c ; EEPROM Ready

.equ ACIaddr = 0x002e ; Analog Comparator

.equ OC1Caddr = 0x0030 ; Timer/Counter1 Compare Match C

.equ ICP3addr = 0x0032 ; Timer/Counter3 Capture Event

.equ OC3Aaddr = 0x0034 ; Timer/Counter3 Compare Match A
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.equ OC3Baddr = 0x0036 ; Timer/Counter3 Compare Match B

.equ OC3Caddr = 0x0038 ; Timer/Counter3 Compare Match C

.equ OVF3addr = 0x003a ; Timer/Counter3 Overflow

.equ URXC1addr = 0x003c ; USART1, Rx Complete

.equ UDRE1addr = 0x003e ; USART1, Data Register Empty

.equ UTXC1addr = 0x0040 ; USART1, Tx Complete

.equ TWIaddr = 0x0042 ; 2-wire Serial Interface

.equ SPMRaddr = 0x0044 ; Store Program Memory Read

.equ INT_VECTORS_SIZE = 70 ; size in words

#endif /* _M128DEF_INC_ */

; ***** END OF FILE ******************************************************
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Appendix E

AVR Opcode Encoding

0 0

0 0 0 0

0 1

1 0

1 1 0 0

0 1

1 0

1 1

0 0 0 1

movw

muls

mulu

fmul

fmuls
fmulsu

0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1

cpc
sbc
add or lsl
cpse
cp

and or tst
eor or clr
or

sub
adc or rol

mov

1 1 cpi

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 nop

Figure E.1: Category 1 opcode encoding.
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0 1

0 0

0 1

1 0

1 1

sbci

subi

ori or sbr

andi or cbr

Figure E.2: Category 2 opcode encoding.
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1 0

X 0

std

lpm

X 0

ldd

0 1

0 0

1 1

0 0 0 0 1 0 X
0 1 1 X
1 1 1 1

elpm
pop

0 1 0 0 1 1 1 1 1 push

0 1 0 1 0 0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 1
0 1 1 0
0 1 1 1

neg
swap

com

inc
asr
lsr
ror

1 0 1 0
1 1 0 X
1 1 1 X

dec
jmp
call

0 1 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

sec
sez
sen
sev
ses
seh
set
sei
clc
clz
cln
clv
cls
clh
clt
cli

0 1 0 1 0 1 0 0 0 0 1 0 0 0
0 0 0 1
1 0 0 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 0 1
1 1 1 0

ret
reti
sleep
break
wdr
lpm
elpm
spm

0 1 0 1 0 0 0 0 0 0 1 0 0 1
0 0 0 0

ijmp
icall1

0 1 0 0 0 0 0 0 0 lds
sts1

0 1 0 1 0 0 0 0 0 1 1 0 0 1 eijmp
eicall10

0 1 0 1 1 0 adiw
sbiw11

0 1 1 0 0 0 cbi
sbic10

1 0
11

sbi
sbis

1 1 0 in
1 out

0 X

st0 X

ld0 0

0 0

0

1

Figure E.3: Category 3 opcode encoding.
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1 1

0 0

rcall

ldi

ser

brcs or brlo
breq

0 1

rjmp

1 0

1 0 1 1 1 11 1 1 1

1 1 0 0

brmi
brvs

0 0 0
1 1 0 0 0 0 1
1 1 0 0 0 1 0
1 1 0 0 0 1 1

brlt
brts
brie

1 1 0 0 1 0 0
1 1 0 0 1 1 0
1 1 0 0 1 1 1

brcc or brsh
brne

1 1 0 1

brpl
brvc

0 0 0
1 1 0 1 0 0 1
1 1 0 1 0 1 0
1 1 0 1 0 1 1

brge
brhc
brtc

1 1 0 1 1 0 0
1 1 0 1 1 0 1
1 1 0 1 1 1 0

brid1 1 0 1 1 1 0
bld
bst

1 1 1 0
1 1 1 0

0
1

0
0

sbrc
sbrs

1 1 1 1
1 1 1 1

0
1

0
0

Figure E.4: Category 4 opcode encoding.
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Atmel Studio 6

Atmel Studio 6 is Atmel’s official Integrated Development Environment
(IDE) used for writing and debugging AVR applications on the Windows
platform. Atmel Studio 6 is available for free, and can be downloaded at:
http://www.atmel.com/tools/atmelstudio.aspx.

This section provides general information on how to successfully use At-
mel Studio 6 to create, compile, and debug AVR assembly projects. Not
every aspect of Atmel Studio 6 will be covered here, but for those who
choose to learn the program in more detail, additional information can be
obtained from Atmel’s website at: http://www.atmel.com.

F.1 Startup Tutorial

This tutorial will give a step-by-step guide on how to install Atmel Studio
6, create a project, add code (new or existing) to the project, and simulate
the project.

F.1.1 Installation

The installation of Atmel Studio 6 is straightforward and involves only a
few steps:

1. Go to http://www.atmel.com/tools/atmelstudio.aspx, and click the
download icon next to Atmel Studio Installer.

2. At this point, you can create a “myAtmel” account, or choose to down-
load Atmel Studio 6 as a guest. In either case, follow the directions
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and download the executable installer.
3. Locate the .exe file you just downloaded and run the setup program

by double-clicking on it.
4. Follow the instructions in the setup program. Most of the default

installation directories will work just fine.
5. When the installer is finished, click on the Finish button to complete

the setup process. Atmel Studio 6 is now successfully installed.

F.1.2 Project Creation

Atmel Studio 6 is an Integrated Development Environment (IDE). Just like
any other IDE, Atmel Studio 6 is project-based. A project is like an envi-
ronment for a particular program that is being written. It keeps track of
what files are open, compilation instructions, as well as the current Graphi-
cal User Interface (GUI) selections. The following discusses the steps needed
to create a new project:

1. Start Atmel Studio 6 by navigating through the Windows start menu:
Start ⇒ Programs ⇒ Atmel ⇒ Atmel Studio 6. The path could
be different if changed during installation.

2. Atmel Studio 6 should launch and display a Start Page. To create a
new AVR project, click on the New Project... button, or navigate
to File ⇒ New ⇒ Project...

3. The dialogue box that appears should look similar to Figure F.1. Un-
der Installed Templates, make sure Assembler is selected.

4. Select AVR Assembler Project as the project type.
5. In the Name text box, type the name of the project, such as Lab1.
6. Make sure that that the checkbox for Create directory for solution

is checked.
7. The location of the project can be changed by clicking on the Browse...

button next to the path name, and navigating to the desired location
for the new project.

8. Click OK to continue.
9. The next dialogue requires a device selection. First, ensure that the

drop-down menu labeled Device Family: selects either All or megaAVR,
8-bit.

10. Scroll through the list of devices and select ATmega128.
11. Click OK to complete the project creation.

At this point, an editor window appears within Atmel Studio 6 and you
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Figure F.1: AVR Studio Project Creation.

are able to begin composing your assembly program. Notice that Atmel
Studio 6 has already created an empty assembly file for you, based on the
name given earlier as the project name. For example, if you named your
project Lab1 as in Figure F.1 then the automatically-created assembly file
would be named Lab1.asm.

If you want to incorporate some code that you have already written into
this new project, then you can do so in one of two ways. First, you can sim-
ply open your existing code file with a text editor and copy-paste some or
all of its contents directly into the open editor window within Atmel Studio
6 - this copies your code into the file created for you, e.g., Lab1.asm. If
you want to include an entire existing file into your newly-created project,
use the following steps:

1. In the Solution Explorer on the righthand side of the Atmel Studio
6 window, right-click on the name of your project (e.g., Lab1) and
select Add ⇒ Existing Item...

2. Navigate to the existing assembly code file that you would like to use
for this project, select it, and click Add.
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3. Your existing code file will now appear in the Solution Explorer
under the heading of your project. Double-click on the file name and
it will open in a new editor tab.

4. If this existing file is to be the “main” assembly file of your project,
right-click on the file name and select Set As EntryFile. Now this ex-
isting file that you included in the project will be considered the main
entry point during compilation. Feel free to remove the automatically-
created file (e.g. Lab1.asm) if you are not going to use it, by right-
clicking on the file name and selecting Remove.

F.1.3 Project Simulation

Once a project has been created, and you have written an assembly program,
it will need to be tested. This is accomplished by running the program on a
simulated microcontroller built into Atmel Studio 6. Atmel Studio 6 has the
capability to simulate almost every AVR microcontroller offered by Atmel.
For the purposes of this tutorial, the ATmega128 will be the microcontroller
that will be simulated. This microcontroller was selected earlier during the
project creation phase. (To change the microcontroller, right-click on your
project name in the Solution Explorer and select Properties. This will
open a tab that allows you to configure various properties of your project.
Make sure the Build tab is selected, and then click the Change Device...
button and select a different microcontroller.)

1. Before the program can be simulated, it must first be compiled. There
are three ways to do this:
(a) In the main Atmel Studio 6 menu, navigate to Build ⇒ Build

Solution.
(b) Click on the Build Solution icon on the main toolbar.
(c) Press the F7 key.

2. If the code was successfully compiled, a message in the Output win-
dow at the bottom should read “Build succeeded”. If it does not say
this, then there were some errors in the code. Clicking on the errors
in the Error List will highlight the line of code causing the error in
the editor window.

3. Once the code has been successfully compiled, simulation can begin.
There are two ways to simulate the chip: debugging mode, which
allows a line-by-line simulation, and run mode, which continuously
runs the program.
(a) There are a few ways to run in debug mode:
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i. Follow the menu Debug ⇒ Start Debugging and Break.
ii. Click on the Start Debugging And Break icon.
iii. Press Alt+F5.

(b) To start the run mode:
i. Follow the menu Debug ⇒ Continue.
ii. Click on the Start Debugging icon.
iii. Press F5.

4. To stop the simulation at any point:
(a) Follow the menu Debug ⇒ Stop Debugging.
(b) Click on the Stop Debugging Icon.
(c) Press Ctrl+Shift+F5.

5. That is how to simulate a program. For more detailed simulation tips
and strategies, see Simulation Tips below.

F.2 Simulation Tips

Just simulating a program is not enough. Knowing how to use the simulator
and debugger is essential to get results from simulation. This section will
provide the necessary information needed to get the most out of a simulation.

F.2.1 Line-By-Line Debugging

Line-by-line debugging is the best way to take control of the simulation. It
allows the programmer to verify data in registers and memory. There are
several ways to get into line-by-line debugging mode. The first would be to
start the simulation in line-by-line debug mode by clicking on the Start De-
bugging and Break icon. When the program is in run mode, hitting the
Break All icon will halt the simulation and put it into line-by-line mode.
Also, if a break point was set in the code, the simulation will automatically
pause at the break point and put the simulation into line-by-line mode.

When running in line-by-line mode, several new buttons will be acti-
vated. These allow you to navigate through the program.

• Step Into (F11) - Steps into the code. Normal operation will run
program line-by-line, but will step into subroutine calls such as the
RCALL command.
• Step Over (F10) - Steps over subroutine calls. Normal operation will

run program line-by-line, but will treat subroutine calls as a single
instruction and not jump to the subroutine instructions.
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• Step Out (Shift+F11) - Steps out of subroutine calls. This will tem-
porarily put the simulation into run mode for the remainder of the
subroutine and will pause at the next instruction after the subroutine
call.
• Run to Cursor (Ctrl+F10) - Runs simulation until cursor is reached.

The cursor is the blinking line indicating where to type. Place the
cursor by putting the mouse over the instruction you want to stop at
and hit the Run to Cursor icon.
• Reset (Shift+F5) - Simulates a reset of the microcontroller; returns

the simulator to the first instruction of the program.

After experimenting around with these five commands, you should be
able to navigate through the code with ease.

F.2.2 Workspace Window

When debugging, the Solution Explorer window is supplemented by tabs
such as IO View and Processor, which provide a look at the current state
of the microcontroller during the course of simulation. The IO View tab
contains all the configuration registers associated with the simulated chip.
By default, this window should automatically be displayed when simulation
is run in line-by-line mode. Figure F.2 shows an example of what the IO
View tab looks like during simulation. By expanding some of the contents
of this window, additional information is available such as the current bit
values, and address, of configuration registers. It is in this window where
you can simulate input on the ports.

The Processor tab displays the current contents of the Program Counter,
Stack Pointer, the 16-bit pointer registers X, Y, and Z, and the Status Reg-
ister. Figure F.3 shows an example of what the Processor tab looks like
during simulation. The Processor tab also shows the current values con-
tained in each of the general purpose registers (in the case of the ATmega128,
registers R00 - R31).

F.2.3 Memory Windows

In actuality, all of the registers are actually parts of memory within the
ATmega128. In addition to the register memory, the ATmega128 has several
other memory banks, including the program memory, data memory, and
EEPROM memory. Of course, no good simulator is complete without being
able to view and/or modify this memory, and Atmel Studio 6 is no exception.
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Figure F.2: I/O View tab in Workspace.

To view the Memory window, follow the menu command Debug ⇒
Windows ⇒ Memory ⇒ Memory 1 or hit Alt+6. The Memory
window, shown in Figure F.4, may pop up on top and obscure other windows,
but it can be docked below the Processor and IO View tabs in order to
be less intrusive.

The main area of the Memory window contains three sets of informa-
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Figure F.3: Processor tab in Workspace.

tion; the starting address of each line of memory shown, the data of the
memory in hexadecimal format, and the ASCII equivalent of that data.
The pull down menu on the top left allows you to select the various memory
banks available for the ATmega128. In Figure F.4, the contents of Pro-
gram Memory are being displayed, with 0x000000 as the starting address
of the first line shown. To edit the memory, just place the cursor in the
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Figure F.4: Memory Window.

hexadecimal data area and type in the new data.

F.3 Debugging Strategies

Debugging code can be the most time consuming process in programming.
Here are some tips and strategies that can help with this process:

• Comment, Comment, Comment. Unless it is absolutely and blatantly
obvious of what the code is doing, comment EVERY line of code. Even
if the code is obvious, at least comment what the group of instruction
is doing, for example, Initializing Stack Pointer.
• Pick a programming style and stick with it. The style is how you lay

out your code, and having a consistent programming style will make
reading the code a lot easier.
• Before writing any actual code, write it out in pseudo-code and con-

vince yourself that it works.
• Break the code down into small subroutines and function calls. Small

sections of code are much easier to debug than one huge section of
code.
• Wait loops should be commented out during debugging. The simulator

is much slower than the actual chip and extensive wait loops take up
a lot of time.
• Use breakpoints to halt the simulation at the area known to be buggy.

Proper use of breakpoints can save a lot of time and frustration.
• Carefully monitor the I/O View tab, Memory tab, and Proces-

sor tab throughout the simulation. These windows will indicate any
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problem.
• Make sure the AVR instruction is actually supported by the AT-

mega128.
• The ATmega128 has certain memory ranges; so make sure that when

manipulating data, the addresses are within range.



Index

∞ (infinity), 516
µarch, 403
S-R latch, 385
n-by-n division, 510
n-by-n/2 division, 510
.BSS segment, 338
.DSS segment, 338
Instruction Set Architecture (ISA), 6
ALU f, 410
IR en, 436
MJ, 436
MK, 436
ML, 436
NPC en, 436
PC en, 437
PCh en, 436
PCl en, 436
PM read, 436
PM write, 436
* (Multiply), 312
* (indirection or dereference operator), 322
+ (Add), 312
- (Subtract), 312
/ (Divide), 312
<< (Left shift), 312
>> (Right shift), 312
ADD x, 62
ADD, 23
AVR I/O Ports B

Data Direction Register D (DDRD), 201
BNZ x, 66
BNZ, 23
HIGH(), 138, 143
J x, 64
J, 23
LDA (x), 67
LDA -(x), 71
LDA, 23
LOW(), 138, 143
NAND, 23
PROGMEM, 338
RAMEND (End of SRAM ), 201
SPH (Stack Pointer high), 153, 201
SPL (Stack Pointer low), 153, 201
STA x, 60

STA, 23
SUB, 23
Y-register, 412
Z-register, 412
#define, 327
#elif, 329
#else, 328
#endif, 328
#ifdef, 328
#ifndef, 328
#if, 329
#include, 327
#undef, 328
% (Modulo), 312
&& (AND), 313
& (AND), 312
& (address operator), 322
^ (Exclusive OR), 312
BV(bit) macro, 333
delay ms(), 335
bit is clear(sfr, bit) macro, 335
bit is set(sfr, bit) macro, 335
~ (One’s complement), 312
cbi(sfr, bit) macro, 334
cli(), 348
do/while loop, 317
enum, 310
extern, 308
for loop, 318
if/else statement, 315
if statement, 315
loop until bit is clear(sfr, bit) macro, 335
loop until bit is set(sfr, bit) macro, 335
pgm read byte(), 360
pgm read byte, 340
pgm read word, 340
register, 309
sbi(sfr, bit) macro, 334
sbiw (Subtract immediate from word), 361
sei() macro, 348
static, 309
strcpy P, 342
typedef, 325
void, 320
volatile, 309
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while loop, 317
‘X’ - don’t care, 512
0-address instruction, 17
1’s-complement, 470
1-address instruction, 17
12-bit PC-relative displacement, 411
12-bit PC-relative format, 406
16-bit 2-to-1 multiplexer, 414
16-bit Address Adder, 409
16-bit Timer/Counter, 203
2’s-complement, 473
2-address instruction, 16
2-address instruction format, 103, 405
2-to-1 multiplexer, 414
3-address instruction, 16
3:2 adder, 506
4-address instruction, 15
4-wire interface, see also AVR SPI
6-bit displacement, 411
64 I/O register address space, 419
7-bit PC-relative displacement, 411
7-bit PC-relative format, 406
8-bit Timer/Counter, 203
8-bit constant value, 411
8-bit data transfers, 420
96-entry Register File, 420

A, 411
A/D Conversion (ADC), see also AVR ADC
absolute addressing, 424
ACC register, 494, 512
accumulated error, 527
Accumulator (AC), 17, 50
Accumulator-based architecture, 17
active high, 386
active low, 385
add delay, 472
Add-and-Shift multiplier, 494
Address Adder, 413
address field, 21
address register (AR), 422
address registers, 99
address registers (ARs), 406
addressing mode, 422
Addressing Modes, 101
addressing modes, 17
Alignment Unit, 411
Always round down, 526
Always round up, 526
American Standard Code for Information Inter-

change ASCII), 468
amplitude, 235
Analog Channel and Gain Selection bits (MUX4:0),

241
Analog Comparator, 276
Analog Comparator Interrupt, 277

Analog Comparator Output (ACO) bit, 277
Analog-to-Digital Converter (ADC), 95, 192, 234
Arithmetic and Logic instructions, 417
arithmetic and logic instructions, 117, 417
Arithmetic and Logic Unit (ALU), 8, 15, 98,

410, 467
arithmetic exceptions, 516
arithmetic instructions, 13
Arithmetic Logic Unit (ALU), 397
arithmetic logic units (ALUs), 43
arithmetic operators, 311
arithmetic shift, 475
arithmetic shift right, 497
array, 323
array indexing, 323
array initialization, 323
array multipliers, 503
assembled, 11
Assembler directives, 135
assembly instructions, 5
assembly language, 10
assembly language programming, 10, 303
asynchronous, 191
asynchronous serial communication, 222
ATmega128, 95
Atmel Studio, 304
AVR 8-bit microcontrollers, 93
AVR ADC

A/D Control and Status Register A (AD-
CSRA), 241

ADC Conversion Complete, 244
ADC Conversion Result unit, 240
ADC Data Register high and low (ADCH

and ADCL), 241
ADC Data Register High Byte (ADCH),

242
ADC Data Register Low Byte (ADCL),

242
ADC Enable (ADEN) bit, 244
ADC Free Running Select bit (ADFR),

244
ADC Input Channel Selection unit, 239
ADC Interrupt Enable bit (ADIE), 245
ADC Interrupt Flag (ADIF), 244
ADC Left Adjust bit (ADLAR), 242
ADC Multiplexer Select register (ADMUX),

241
ADC Prescaler Select bits (ADPS2:0), 245
ADC Prescaling unit, 239
ADC Reference Voltage Selection unit, 239
ADC Start Conversion (ADSC) bit, 244
Reference Selection bits (REFS1:0), 242

AVR Addressing Modes
Direct Addressing, 103, 114
Direct Program Memory Addressing, 108
displacement, 108
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Indirect Addressing, 105, 111
Indirect Addressing with Displacement, 106
Indirect Addressing with Post-Increment,

106
Indirect Addressing with Pre-Decrement,

106
Indirect Program Memory Addressing, 108
Indirect with Displacement, 144
Indirect with Post-increment, 144
Indirect with Pre-decrement, 144
PC-relative, 109
post-increment, 106
pre-decrement, 106
Program Memory Addressing, 108
Program Memory Constant Addressing, 107
Register Addressing, 102, 111
Register Indirect with Displacement, 422
Register Indirect with Post-increment, 424
Register Indirect with Pre-decrement, 424
Relative Program Memory Addressing, 108

AVR Analog Comparator
Analog Comparator and Status Register

(ACSR), 276
Analog Comparator Bandgap Select (ACBG)

bit, 276
Analog Comparator Disable (ACD), 276
Analog Comparator Input Capture Enable

(ACIC) bit, 278
Analog Comparator Interrupt (ACI), 276
Analog Comparator Interrupt Enable (ACIE)

bit, 278
Analog Comparator Interrupt Mode Se-

lect bits 1:0 (ACIS1:0), 277
Analog Comparator Output (ACO), 276
Analog Input 0 (AIN0), 276
Analog Input 1 (AIN1), 276
Special Function IO Register (SFIOR), 278

AVR assembler, 135
AVR Assembly Directives

.BYTE, 136, 138

.CSEG, 136

.DB, 136

.DEF, 136

.DEVICE, 136

.DSEG, 136

.DW, 136

.ENDMACRO, 136

.EQU, 136

.ESEG, 136

.EXIT, 136

.INCLUDE, 136

.LISTMAC, 136

.LIST, 136

.MACRO, 136

.NOLIST, 136

.ORG, 135, 136, 184

.SET, 136
AVR Assembly Instructions

LD (Load indirect), 451
ADC (Add with carry two registers), 117,

119, 482
ADD (Add two registers), 98, 103, 117, 130,

405, 418, 438, 446, 451, 459
ADIW (Add immediate to word), 119, 357,

418
ANDI (Logical AND register and constant),

117, 405
AND (Logical AND registers), 117, 405, 481
ASR (Arithmetic shift right), 128
BLD (Bit load from T to Register), 100
BNE Branch not equal), 486
BRCC (Branch if carry set), 149
BRCS (Branch if carry set), 148
BREQ (Branch if equal), 101, 122, 133, 148,

149, 406, 440, 451
BRGE (Branch if greater or equal), 406
BRLT (Branch if less than), 148, 406
BRNE (Branch not equal), 149
BST (Bit store from register to T ), 100
CALL (Direct subroutine call), 126, 134,

152, 406, 416, 427, 432, 443, 451–453
CBI (Clear bit in I/O register), 129
CBR (Clear bit(s) in register), 120
CLI (Global interrupt disable), 193
CLR (Clear register), 103, 121, 418
COM (One’s complement), 119, 406
CPI (Compare with immediate), 123
CP (Compare), 101, 123, 405
DEC (Decrement), 121, 406, 410
EOR (Exclusive OR registers), 481
ICALL (Indirect call to (Z)), 126, 152, 431,

432
IJMP (Indirect jump to (Z)), 126
INC (Increment), 103, 121, 406, 410, 418
IN (In port), 98, 104, 117, 132, 183, 202,

406, 420
JMP (Direct jump), 125, 406, 416, 427
LDD (Load indirect with displacement), 106,

112, 132, 406, 414
LDI (Load immediate), 113, 131, 142, 183,

405
LDS (Load direct from SRAM ), 103, 114
LD (Load indirect), 106, 131, 434
LPM (Load program memory), 107, 115, 338,

431, 432
LSL (Logical shift left), 127
LSR (Logical shift right), 127, 406
MOVW (Copy register word), 111, 420
MOV (Copy register), 111, 155, 405, 420
MUL (Multiply unsigned), 418
NEG (Two’s complement), 119, 410, 418
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ORI (Logical OR register and constant),
117, 405, 418, 446, 451

OR (Logical OR registers), 117, 481
OUT (Out port), 104, 117, 153, 183, 406,

420
POP (Pop register from stack), 115, 196,

432
PUSH (Push register on stack), 115, 196,

432
RCALL (Relative subroutine call), 109, 126,

152, 406, 432
RETI (Return from interrupt), 193
RET (Subroutine return), 126, 134, 152,

432, 436
RJMP (Relative jump), 109, 125, 187, 406
ROR (Rotate right through carry), 406
SBC (Subtract with carry two registers),

117
SBIC (Skip if bit in I/O register cleared),

359
SBIC (Skip if bit in I/O register is cleared),

125
SBIS (Skip if bit in I/O register is set),

125
SBIW (Subtract immediate from word), 119,

418
SBI (Set bit in I/O register), 129
SBRC (Skip if bit in register is cleared), 125
SBRS (Skip if bit in register is set), 125
SBR (Set bit(s) in register), 120
SEI (Set global interrupt flag), 193, 202
SER (Set register), 121
STD (Store indirect with displacement), 106,

112, 406, 414
STS (Store direct to SRAM ), 103, 114, 233
ST (Store indirect), 98, 106, 451
SUBI (Subtract constant from register), 117,

418
SUB (Subtract two registers), 98, 117, 418
SWAP (Swap Nibbles), 129
TST (Test for zero or minus), 121

AVR ATmega128, 179
AVR Functions, 143
AVR GCC, 304
AVR I/O Ports

Data Direction Register B (DDRB), 201
Port A-G Data Direction Register (DDRA-

G), 179
Port x Data Direction Register (DDRx),

180
Port x Data register (PORTx), 180
Port x Input Pins (PINx), 180

AVR I/O register definitions, 327
AVR IAR, 304
AVR Instruction Formats, 404
AVR Interrupts

External Interrupt Control Register A (EICRA),
196

External Interrupt Control Register B (EICRB),
197

External Interrupt Flag Register (EIFR),
196

External Interrupt Mask Register (EIMSK),
196

External Interrupt Request 0 (INT0), 346
INT7-INT0, 192
Interrupt Sense Control bit 0 (ISCn0), 197
Interrupt Sense Control bit 1 (ISCn1), 197

AVR microcontrollers, 178
AVR SPI

8-bit Shift Register, 250
Clock Phase (CPHA), 252, 254
Clock Polarity (CPOL), 252, 254
Data Order (DORD), 253
Double SPI Speed (SPI2X), 253
Master Input Slave Output (MISO), 249
Master Output Slave Input (MOSI), 249
Master/Slave Select (MSTR), 253
Pin Control Logic, 250
serial clock (SCK), 249
Slave Select (SS), 249
SPI Clock Generator, 250
SPI Clock Rate Select bits 1 and 0 (SPR1:0),

254
SPI Control Register (SPCR), 253
SPI Data Register (SPDR), 254
SPI Enable (SPE), 253
SPI Interrupt Enable (SPIE), 253
SPI Interrupt Flag (SPIF), 252
SPI Logic, 250
SPI Status Register (SPSR), 252
Write COLision Flag (WCOL), 253

AVR Timer/Counter
Clock Select bits, 212
Compare Output Mode bits, 213
CTC mode, 214
Extended Timer Interrupt Mask Register

(TIMSK), 206
Fast PWM mode, 214
Force Output Compare, 214
Input Capture Edge Select (ICES1), 215
Input Capture Flag 1 (ICF1), 206
Input Capture Noise Canceler 1 (ICNC1),

215
Input Capture Pin (ICP1), 206
Input Capture Register 1 (ICR1), 206
Normal mode, 214
Output Compare Flag 0 (OCF0), 204
Output Compare pin 0 (OC0), 204
Output Compare Register 0 (OCR0), 203
Output Compare Register 1A (OCR1A),

205
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Output Compare Register 1B (OCR1B),
205

Output Compare Register 1C (OCR1C,
205

Timer/Counter 1 register high byte (TCNT1H),
205, 331

Timer/Counter 1 register low byte (TCNT1L),
205, 331

Timer/Counter Control Register 0 (TCCR0),
203, 204, 212

Timer/Counter Control Register 1A (TCCR1A),
214

Timer/Counter Control Register 1B (TCCR1B),
214

Timer/Counter Control Register 1C (TCCR1C),
214

Timer/Counter Control Register 2 (TCCR2),
212

Timer/Counter Control Registers 0-3 (TCCR0-
3), 212

Timer/Counter Input Capture Interrupt
Enable 1 (TICIE1), 206

Timer/Counter Interrupt Flag Register (TIFR),
206

Timer/Counter Overflow 0 (TOV0), 203
Timer/Counter Overflow 1 (TOV1), 205
Timer/Counter0, 203
Timer/Counter0 Output Compare Match

Interrupt Enable (OCIE0), 206
Timer/Counter0 Overflow Interrupt En-

able (TOIE0), 206
Timer/Counter0 register (TCNT0), 203
Timer/Counter0 Waveform Generation Mode

bits (WGM01:0), 213
Timer/Counter1, 203, 204
Timer/Counter1 Compare Match A (TIMER1

COMPA), 346
Timer/Counter1 Force Output Compare

bits (FOC1A:C), 215
Timer/Counter1 Output Compare A Match

Interrupt Enable (OCIE1A), 206
Timer/Counter1 Output Compare C Match

Interrupt Enable (OCIE1B), 206
Timer/Counter1 Wave Generation Mode

bits (WGM13:0), 214, 215
Timer/Counter1, Overflow Interrupt En-

able (TOIE1), 206
Timer/Counter2, 203
Timer/Counter2 Clock Input (T2) pin, 204
Timer/Counter3, 203, 204

AVR TWI
Address Match Unit, 261
Bit Rate Generator, 261
Bus Interface Unit, 261
REPEATED START condition, 259
SLA+R/W, 259

START condition, 258
STOP condition, 258
TWI Address Register (TWAR), 261
TWI Bit Rate Register (TWBR), 261
TWI Control Register (TWCR), 261
TWI module, 261
TWI Status Register (TWSR), 261

AVR USART
Data OverRun (DORn), 231
External Clock (XCKn), 224
Framing Error (FEn), 232
Parity Error (UPEn), 232
Receive Complete interrupt, 231
Receive Data (RxDn), 224
Receive Data Bit 8 (RXB8n), 228
Receive Shift Register, 224
Receiver (Rx), 222, 224
Receiver Enable (RXENn), 229
RX Complete Interrupt Enable (TXCIE),

231
Transmit Complete interrupt, 231
Transmit Data (TxDn), 224
Transmit Data Bit 8 (TXB8n), 228
Transmit Shift Register, 224
Transmitter, 224
Transmitter (Tx), 222
Transmitter Enable (TXENn), 229
TX Complete Interrupt Enable (RXCIE),

231
USARTnAsynchronous Double Speed Mode

(U2Xn), 229
USARTn Baud Rate Register (UBRRn),

228
USARTn Baud Rate Registers (UBRRnH

and UBRRnL), 224
USARTn Character SiZe (UCSZn2:0), 226
USARTn Clock Polarity bit (UCPOLn),

226
USARTn Control and Status Register A-

C (UCSRnA-C), 225
USARTn Data Register (UDRn), 224
USARTn Data Register Empty (UDREn),

230
USARTn Data Register Empty Interrupt

Enable (UDRIEn), 231
USARTn Mode Select (UMSELn), 225
USARTn Parity mode (UPMn1:0), 227
USARTn Receive Complete (RXCn), 230
USARTn Receive Data Buffer (RXBn), 230
USARTn Stop Bit Select (USBSn), 227
USARTn Transmit Complete (TXCn), 230
USARTn Transmit Data Buffer (TXBn),

230
USART0, 224
USART0 Asynchronous Double Speed Mode

(U2X0), 233
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USART0 Data Register Empty (UDRE0),
336

USART0 I/O Data Register (UDR0), 336
USART1, 224

AVR-GCC, 330

base, 515
basic 2-stage datapath, 407
Baud rate, 228
Baud rate clock, 226
baud rate clock, 203
Baud rate divider, 229
Baud Rate Generator, 224
bias, 515
bidirectional shift register with parallel load,

391
bidirectional tri-state buffers, 180
big endian, 352
Binary Coded Decimal (BCD), 100, 129, 161
binary decoder, 382
binary division, 509
Bit and bit-test instructions, 127
Bit Manipulation, 127
bit shift (<<) operation, 333
bit test and set, 433
Bit-pair Recoding, 501
bit-rate, 228
bit-slice, 482
bits per second (bps), 228
bitwise operators, 312
Block Carry Lookahead Network, 492, 493
Block CLA, 492
block generation term, 492
block propagation term, 492
Bluetooth, 222
Booth Recoding, 497
BOTTOM, 208
Branch and Jump instructions, 417
branch Penalty, 461
branch target address, 406, 424
branches, 424
buses, 43
busy-waiting, 191

C (Carry, 486
C-bit, 101, 127
cache memory, 43
carry (C) flag, 66
carry bit (C-bit), 391
Carry Lookahead Adders (CLAs), 488
Carry Lookahead Network, 489
carry-in, 476
carry-out, 472, 476
Cascaded CLAs, 491
Central Processing Unit (CPU), 2, 42
Chip Select, 397

chip set, 3
circular shift, 476
Clear Timer on Compare Match (CTC) mode,

208
clock cycle time, 189
clock cycles or ticks, 203
Clock Generator, 224
code placement, 145
Code Segment, 138
code structure, 144
coder-decoder (CODEC), 249
CodeVisionAVR, 304
column-major ordering, 324
comparator, 236
compiler design, 404
compiler-specific directives, 326
complementer, 479
compound assignment operators, 314
computer architecture, 41
computer organization, 41
condition codes, 66, 100, 486
conditional branch, 66, 122
conditional branches, 100, 424
conditional compilation, 326, 328
conditional expression, 316
constants, 107, 306, 310
constraint characters, 355
constraint modifier, 356
Control and Alignment Unit (CAU), 434
control flow, 193
Control Logic, 452
control signals, 43, 449
Control statements, 314
control transfer, 433
control transfer instructions, 13, 122, 424
Control Unit (CU), 43, 403, 432
control-flow, 147
controls signals, 52
conversion time, 245
CPU core, 95
CTC mode, 207
Current State, 451, 452

D flip-flop, 452
data acquisition, 234
data bus, 51
Data Memory, 98, 419
Data Memory Address Register (DMAR), 408
Data Segment, 138
data structures, 147
data transfer, 433
Data Transfer instructions, 417
data transfer instructions, 13, 111, 419
data transfer operations, 404
data types, 306
datapath, 43, 403, 432
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decimal instructions, 14
decoder, 381
definition file, 146
demultiplexer (DEMUX), 380
DEMUX, 432
denormalized, 517
denormalized numbers, 516
destination register, 44, 102, 405
destination register identifier, 411, 447
device drivers, 10
differential input, 238
Digital-to-Analog Comparator (DAC), 236
direct format, 406
direct jump, 427
direct or absolute addressing, 18
displacement, 157
displacement format, 406
dividend, 509, 512
DIVIDEND register, 512
division, 509
division operator (/), 311
divisor, 509, 512
DO statement, 151
duty cycle, 212
dynamic RAMs (DRAMs), 394

EEPROM (Electrically Erasable Programmable
Read Only Memory, 342

effective address, 19, 60, 103, 105, 106
effective address (EA), 55
embedded C, 304
embedded systems, 1, 43, 94
enable, 382
End-Around Carry (EAC), 472
engine direction, 187
engine enable, 187
enhance datapath, 407
enhanced datapath, 430
enumeration, 310
error checking, 222
Ethernet, 3
even parity, 223
EX1, 449
EX2, 449
EX3, 449
Exact-width Integer Types, 306
excess, 515
excess-1023, 518
excess-127, 515
Exclusive-OR (EOR), 411
Execute (EX) stage, 438
Execute Cycle, 59
execute cycle, 55
Execute stage, 407, 415, 417
exponent, 515
expressions, 141, 147

external interrupts, 192, 196

falling edge, 196
fan-in, 490
fan-in Problem, 380
Fast PWM Mode, 211
Fetch (IF) stage, 416
Fetch and Execute cycles, 448
fetch cycle, 55
Fetch stage, 407, 415
finite state diagram, 449
finite state machine, 449, 452
Finite State Machine (FSM), 52, 436
fixed-point format, 468
flip-flop, 383
flip-flops, 382
floating-point format, 468
floating-point instructions, 14
floating-point numbers, 514
floating-point operations, 12
floating-point unit, 13
FOR statement, 149
four-column method, 144
Fraction, 515
Fractional division, 527
fractional division, 524
frame, 222
frames, 222
frequency, 235
full adder (FA), 476
full duplex, 249
function, 319
function prototype, 320, 326
function table, 476
functions, 147, 153

gate delay (gd), 478
General Purpose Registers (GPRs), 16, 98, 405,

447
general-purpose computers, 1, 42
generation term, 488
Global Interrupt Enable bit (I-bit), 193, 253,

348, 362
Global Positioning System (GPS), 222
Global System for Mobile (GSM), 222
global variable, 307
Graphics Processing Unit (GPU), 2
Group A instructions, 433
Group B instructions, 433
Group C instructions, 433
Group D instructions, 433
guard bit, 525

H-bit, 100
half adder (HA), 508
half-duplex, 250
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Hardware Description Language (HDL), 44
header files, 326
Heap area, 338
hidden bit, 515
high impedance state, 181
high-level language, 9

I-bit, 100
I/O control registers, 330
I/O Controller, 3
I/O Direct Addressing, 104
I/O format, 405
I/O instructions, 13
I/O pin, 179
I/O ports, 95, 179
I/O register address, 411
identifier, 305
IEEE 754 Floating-Point format, 515
IF, 449
IF statement, 147
IF-ELSE statement, 149
immediate addressing, 18
immediate format, 405
immediate value, 405
immediate values, 107
increment/decrement operators, 314
indirect, 144
Indirect addressing, 19
indirect addressing mode, 68
indirect jump, 429
indirection, 19, 68
Infrared (IR), 222
Input/Output (I/O), 6, 42, 94, 177
instruction cycle, 55, 415, 452
instruction decoder, 381
instruction decoding, 433
instruction format, 20
Instruction Pointer, 408
Instruction Register (IR), 50, 408, 416
Instruction Set Architecture (ISA), 5, 11, 41,

95, 403, 494
Internal Data Bus, 50
internal interrupts, 192
interrupt, 191
Interrupt Service Routine (ISR), 193, 345
interrupt vector table, 193
interrupt vectors, 187
inverted PWM output, 212
ISA extension, 67

jumps, 424
Jumps or unconditional branches, 100

K, 411
k, 411
k12, 411

Karnaugh map (K-map), 476
keywords, 305

L1 cache, 2
L3 cache, 2
last-in, first-out (LIFO), 100, 115
latches, 382
least significant bit (LSB), 157
list file (.lss), 351
little endian, 157
local variable, 307
logical instructions, 13
logical operators, 313
logical shift, 475
logical shift right, 496, 497
loops, 149
low level, 196

machine instructions, 10, 130
machine language programs, 11
macros, 326
mantissa, 515
master, 258, 387
MAX, 208
members, 324
memory, 42
Memory Address Register (MAR), 50
Memory Controller, 3
Memory Data Register (MDR), 50, 431
memory direct addressing, 18
memory element, 382
memory indirect addressing, 19
memory word, 43
memory-mapped I/O, 23, 330
micro-operation, 44, 55, 416
microarchitecture, 403
microcontrollers, 94, 178
mnemonics, 10, 130
Modified Booth algorithm, 501
modified FA (MFA), 480
Modified Full Adders (MFAs), 489
modulo operator (%), 311
most significant bit (MSB), 157, 470
MPY register, 494
MULT register, 494
multi-cycle implementation, 415, 449, 458
multidimensional arrays, 323
multiplexer (MUX), 54, 379, 414
multiplicand, 494
multiplier, 494
MUXA, 414
MUXB, 414
MUXC, 414, 432
MUXD, 431
MUXE, 431
MUXF, 414
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MUXG, 414
MUXH, 414
MUXI, 431
MUXJ, 415
MUXK, 415
MUXL, 431

N (Negative), 486
N-bit, 100
NaN (Not a Number), 516, 517
negative (N) flag, 66
negative edge-triggered D flip-flop, 387
negative partial remainder, 512
nested structures, 326
Next PC (NPC), 408
next PC (NPC), 416
Next State, 451, 452
non-inverted PWM output, 211
non-numeric data, 468
non-restoring division, 510, 513
non-volatile, 342
non-volatile flash memory, 97
Normal mode, 207
normalized, 515, 516
numeric data, 468

odd parity, 223
one-operand format, 406
opcode, 131
opcode bits, 404
opcode extension, 22
operand, 15, 95, 106
operation code (opcode), 21, 50
operators, 142, 311
overflow, 472, 473, 516
overflow (V) flag, 66

pad bit, 499
parity (P) bit, 223
parity bit, 222
partial product, 494
partial Product Reduction, 506
partial remainder, 509, 510
pass transistor, 187
passive switch, 187
PC-relative addressing, 424
PC-relative branch, 133, 424
PC-relative formats, 406
PC-relative jump, 125, 157
PC-relative target address, 440
PCh, 432
PCl, 432
personal computers (PCs), 94
pipeline implementation, 415
pipelined datapath, 459
pipelining, 458

pixel, 312
pointers, 68, 322
polling, 255
port-mapped I/O, 23
positive partial remainder, 512
post-normalization, 521, 527
pre-decrement, 71
pre-normalization, 520
precision, 515
preprocessor, 326
preprocessor directives, 326
Prescaler, 204
Program Counter (PC), 16, 50, 100, 408
Program Flash, 97
Program Memory, 97, 415
Program Memory Address Register (PMAR),

431
propagation term, 488
pseudo-AVR microarchitecture, 404, 459
pseudo-CPU, 49, 171, 174
pseudo-ISA, 22
pull-up resistor, 181, 187

q, 411
quantization, 235
quantization noise, 236
Quiet NaN (QNaN), 517
quotient, 509

radix, 515
radix point, 515
RAMEND, 116
random access memory (RAM), 43
range, 515
RARh, 431
RARl, 431
Rd, 411
real numbers, 514
Real-Time Clock (RTC), 257
Recursive functions, 321
Reduced Instruction Set Computer (RISC), 15
redundant codes, 497
register, 389
Register Address Logic (RAL), 411, 420, 438,

445, 447
register allocation, 309
register direct addressing, 19
register file, 19, 21, 397
register file (RF), 412
register identifier, 19, 404, 412
register indirect addressing, 20
Register Transfer Language (RTL), 44
register transfer operations, 44
register-indirect, 422
registers, 43
relational operators, 313
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remainder, 509
replacement operator (←), 44
reserved words, 305
resolution, 235
restoring division, 510, 511
return address, 126, 134, 152, 192, 430, 461
Return Address Register (RAR), 430
return addresses, 100
Reverse Polish Notation (RPN), 17, 115
RFID reader, 222
Ripple Carry Adder, 477, 480
rising edge, 196
rotate, 476
Round to nearest even, 526
rounding, 524
rounding bit, 525
rounding modes, 526
row-major ordering, 324
Rr, 411
RS-232 protocol, 222

S (Sign), 486
S-bit, 100
Sample and Hold circuit, 239
Samples Per Second (SPS), 245
sampling rate, 235
Schmitt trigger, 180
self modifying code, 20
sensors, 178, 234
sequence control, 436, 448
sequencing, 52
Serial Clock (SCL), 258
serial communications, 222
Serial Data (SDA), 258
serial data frame format, 222
Serial Peripheral Interface (SPI), see also AVR

SPI
Serial Universal Synchronous/Asynchronous Re-

ceiver/Transmitter (USART), 95
serial-in, serial-out 4-bit shift register, 390
set of control signals, 436
Set-Reset (S-R) latch, 383
Shift and Rotate, 127
shift left, 312
Shift Register, 249
shift register, 222, 390
shift right, 312
sign-extended, 497
Sign-extension, 408
sign-extension (se), 409
Signaling NaN(SNaN ), 517
Signed-Magnitude, 469
significand, 515
single bit error, 223
single-ended ADC, 238
single-precision, 515

slave, 258, 387
software interrupt, 191
source operands, 404
source register, 44, 102
source register identifier, 411, 447
Special Function Registers, 330
special-purpose registers, 408
SPH, 431
SPL, 431
SRAM, 97
SREG, 253
stack, 17, 100, 187, 198
Stack area, 338
Stack Pointer (SP), 100, 431
Stack-based architecture, 17
start (St) bit, 223
start bit, 222
state, 449
state of the processor, 195
state table, 449
Static RAM (SRAM), 98, 393
Status Register (SREG), 100, 348
sticky bit, 525
stop (Sp) bits, 223
stop bits, 222
storage modifier, 307
string instructions, 14
structure, 324
stub functions, 360
subroutine, 147, 151
subroutine calls, 126
subroutine calls and returns, 100
successive approximation, 237
Successive Approximation Register (SAR), 236
sum, 476
Super-Block Carry Lookahead Network, 493
supply voltage, 187
synchronous, 191
synchronous serial communication, 222
system calls, 9
system instructions, 13
System-on-Chip (SoC), 3

T-bit, 100
target address, 64, 108, 109, 406, 414–417, 424
TCNT0, 203
TCNT1, 205
TekBot, 183
Timer/Counters, 190, 203
Timers/Counters, 95, 192
TOP, 208
transceiver, 192
transducer, 235
traps, 191
tri-state buffer, 53, 181
Truncate, 526
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truth table, 476
two read-port, two write-port Register File, 412
two’s-complement arithmetic, 100
two’s-complement number, 109
two-operand format, 404
Two-Wire Interface (TWI), 257
type definition, 307

unary operation, 64
unconditional branch, 66
unconditional branches, 125
underflow, 516
Universal Serial Bus (USB), 222
Universal Synchronous/Asynchronous Receiver/-

Transmitter (USART), 192, 203, 222

V (Overflow), 486
V-bit, 101
validation, 404
variables, 306
vector, 193
verification, 404

Wallace Tree Reduction, 506
Waveform Generator, 204
well-structured program, 144
WHILE statement, 150
WLAN, 3

XCKn pin, 226

Z (Zero), 486
Z-bit, 101
Z-flag, 66
zero, floating-point, 516
zero-fill (zf), 409, 410
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