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* Introduction

e Latches and Flip-Flops

e Synchronous Logic Design
* Finite State Machines

e Parallelism
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Introduction

* Outputs of sequential logic depend on current
and prior input values — it has memory.

e Some definitions:

— State: all the information about a circuit necessary
to explain its future behavior

— Latches and flip-flops: state elements that store
one bit of state

— Synchronous sequential circuits: combinational
logic followed by a bank of flip-flops
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Sequential Circuits

« Glve sequence to events
 Have memory (short-term)

» Use feedback from output to input to store
Information
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State Elements

e The state of a circuit influences its future
behavior

o State elements store state
— Bistable circuit

OGIC DESIGN
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elements
» Two outputs: Q, Q
* No Inputs

SEQUENTIAL LOGIC DESIGN
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Bistable Circuit

* Fundamental building block of other state
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Bistable Circuit Analysis

e Consider the two possible cases:

-Q= 0_3 1 }@Q °
then Q = 1, Q = 0 (consistent) %<
0 }yié
-Q=1:
then (5 =0, Q =1 (consistent) 0 %A Q
1§° Q

 Stores 1 bit of state in the state variable, Q (or Q)
o But there are no inputs to control the state

SEQUENTIAL LOGIC DESIGN
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= SR (Set/Reset) Latch
W
w
Y SR Latch Rj@&Q
9
G T
2 el
1 S
Ef » Consider the four possible cases:
EI ~-S=1,R=0
1 —_ _—
S Cs-ores
H - S= 1: R=1
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thenQ=1and Q=0

thenQ=1and Q=0
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_S:O’ R:O QpreV:O Qprev:]'

then Q = Qprev R m. 05 R ° mo Ll

~-S=1,R=1: ngQ
thenQ=0,0=0 °
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SR Latch Analysis

_S:O’ R:O QpreV:O Qprev:]'

then Q = Qprev R m. 05 R ° mo —Q

— Memory!

~-S=1,R=1: ngQ
thenQ=0,0=0 °

— Invalid State < . m. o)
Q#NOTQ
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SR Latch Symbol

e SR stands for Set/Reset Latch
— Stores one bit of state (Q)

e Control what value is being stored with S, R
Inputs

— Set: Make the output 1 S;;;?;“
(S=1,R=0,Q=1)

— Reset: Make the output 0 o
(S=0,R=1,Q=0) 1o

- SEQUENTIAL LOGIC DESIGN
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D Latch

e Two inputs: CLK, D
— CLK: controls when the output changes
— D (the data input): controls what the output changes to

e Function

SEQUENTIAL LOGIC DESIGN

D Latch
— When CLK =1, Symbol
D passes through to Q (transparent) CI|_K
— When CLK =0, b o-
Q holds its previous value (opagque) o
* Avoids invalid case when
Q#NOTQ
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g D Latch Internal Circuit
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%: D Latch Internal Circuit

S

i |

Q CLK b RIR QFQ CLK
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D Flip-Flop

e Inputs: CLK, D D Flip-Flop

e Function ~Symbols

— Samples D on rising edge of CLK |
« When CLK rises from0to1,D P QF - -

passes through to Q Q-

e Otherwise, Q holds its previous
value

— Q changes only on rising edge of
CLK

 Called edge-triggered
« Activated on the clock edge :
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complementary clocks

e When CLK =0
— L1 is transparent

GIC DESIGN

Oi — L2 is opaque

o

- — D passes through to N1
< WhenCLK=1

I~ — L2 is transparent

Z* — L1 is opaque

E'-S\ — N1 passes through to Q
U — D passes through to Q
|

v
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D —

CLK

Q| O

N1

D Flip-Flop Internal Circuit

Two back-to-back latches (L1 and L2) controlled by

CLK
D

Q
L2 Q

—
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D Latch vs. D Flip-Flop

D

Q
Q
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Enabled Flip-Flops

O
Nr
vy
H * Inputs: CLK, D, EN
d — The enable input (EN) controls when new data (D) is stored
(5. * Function
9 — EN = 1: D passes through to Q on the clock edge
_l' — EN = 0: the flip-flop retains its previous state
q Internal
m,: Circuit
Eﬁ EN CI‘_K Symbol
| |
=~ lo
[
(Y EIN
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%i Resettable Flip-Flops
|y
vy
H e Inputs: CLK, D, Reset
O e Function:
O — Reset = 1: Qisforcedto 0
O~ Reset=0: flip-flop behaves as ordinary D flip-flop
3 Symbol

| ymbols
s -
Wy
S D QF 1.
H Reset |
v |
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Resettable Flip-Flops

e Two types:

— Synchronous: resets at the clock edge only
— Asynchronous: resets immediately when Reset = 1

« Asynchronously resettable flip-flop requires
changing the internal circuitry of the flip-flop

« Synchronously resettable flip-flop?

SEQUENTIAL LOGIC DESIGN
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Resettable Flip-Flops

e Two types:
— Synchronous: resets at the clock edge only
— Asynchronous: resets immediately when Reset = 1

« Asynchronously resettable flip-flop requires
changing the internal circuitry of the flip-flop

« Synchronously resettable flip-flop?

Internal
Circuit
CLK

D_
Reset — > D Q—Q
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Settable Flip-Flops

- Inputs: CLK, D, Set

e Function:
—Set=1: Qissettol
— Set = 0: the flip-flop behaves as ordinary D flip-flop

Symbols

Set |

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <25> EIE



E Sequential Logic

Ty

H « Sequential circuits: all circuits that aren’t
O combinational

g? e A problematic circuit:

=~ X > Y > z> X/
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Sequential Logic

Sequential circuits: all circuits that aren’t
combinational

« A problematic circuit:

0GIC DESIGN

012345678t|me(ns)

* No inputs and 1-3 outputs

« Astable circuit, oscillates

Period depends on inverter delay

[t has a cyclic path: output fed back to input

ENTIAL LO
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Synchronous Sequential Logic Design

» Breaks cyclic paths by inserting registers
* Registers contain state of the system

« State changes at clock edge: system synchronized to the
clock

* Rules of synchronous sequential circuit composition:
— Every circuit element is either a register or a combinational circuit
— At least one circuit element is a register
— All registers receive the same clock signal
— Every cyclic path contains at least one register

e Two common synchronous sequential circuits
— Finite State Machines (FSMs)
— Pipelines

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <28>



=8 Finite State Machine (FSM
9
m . CLK
& ° Consists of: |
|
@ — State register S 7S
— Next Current
) » Stores current state State State
9{  Loads next state at clock edge
El‘ — Combinational logic
Ty « Computes the next state
> « Computes the outputs
%‘ Next State Output
0 Logic Logic
tl.’; +{ (E %SN&(; ﬁ;[ (E %Outputs
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Finite State Machines (FSMs)

» Next state determined by current state and inputs

e Two types of finite state machines differ in output logic:
— Moore FSM: outputs depend only on current state
— Mealy FSM: outputs depend on current state and inputs

GIC DESIGN

9[ Moore FSM
o] CLK
l_ ) M next Kk next | k N
E n puts T;g:i state state ollcj)gpigt ou tpU ts
L Mealy FSM

CLK
|

M next Yk next k N
INPULS +— state |~ StRI€ 4 State OIUtPUt outputs
logic oI
<G
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FSM Example

 Traffic light controller
— Traffic sensors: T,, Tz (TRUE when there’s traffic)
— Lights: L,, Lg Dining
Hall
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FSM Black Box

e Inputs: CLK, Reset, T,, T
e Outputs: L,, Lg

TIAL LOGIC DESIGN

CLK
|
T, — Traffic —— L,
Light
T, — Controller —— L;
g ‘
Reset
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FSM State Transition Diagram

 Moore FSM: outputs labeled in each state
o States: Circles
e Transitions: Arcs

Reset

LOGIC DESIGN
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FSM State Transition Diagram

 Moore FSM: outputs labeled in each state
o States: Circles
e Transitions: Arcs

S1
L,: yellow
L,: red
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FSM State Transition Table

O

3

Wy

Q) Current

@ State Inputs
\l

O

Q S0 0 X
]

~i SO 1 X
< S1 X X
b~ S2 X 0
E; 52 X 1
a« S3 X X
Sy

Ll
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E FSM State Transition Table
e B

-

Q‘ Current

X State Inputs

T

G

QX SO 0 X S1
|

3 @ T x s
W: S2 X 0 S3
Ei S2 X 1 S2
a« S3 X X SO
Ly

vy
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g FSM Encoded State Transition Table
T

Vo'

"6': Current State Inputs Next State

L State  Encoding
~ 1 0 0 0 | X

G S0 00
o o 0 1 | X

= | 1 0 X | 0 S2 10
I

- | 1 0 X | 1 S3 1
El 1 1 X | X

S

L

v
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E FSM Encoded State Transition Table
O
e
["'QJ: Current State Inputs Next State
S
= | O 0 0 X | o | 1
8 0 0 1 | X |o] o S0 %0
Slo x| x]1]o sl 01
< | 1 0 | X | o 1] 1 S2 10
= 1 o | x | 1|1 o
, S3 11
Ei 1 |1 | x | x|o] o
S Si=ses
H S0 =515 Ta + 515 T
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FSM Output Table

O

W

Wi

‘«Yd Current State Outputs _
Output Encoding

G 0 0 green 00

9: 0 1 yellow 01

— 1 0 red 10

<1

[~

S

3

Wy

¥y
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FSM Output Table

O

A

Wy

‘«Yd Current State Outputs

U Output Encoding

Nl

| o 0 0 0 | 1] 0 green 00

Ol ol 1 ]of[1[1]o]|yelow o

El! 1 0 1 0 0 0 red 10
. 1 1 1 0 0 1

Nl

[~

< La =51

Ps: Lao = 5159

U' Lgs =S

H Lgo = 515

© Digital Design and Computer Architecture, 2" Edition, 2012

Chapter 3 <40>

A

ELSEVIER



FSM Schematic:
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FSM Schematic: Next State Logic
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FSM Schematic:
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Output Logic

output logic  outputs
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FSM State Encoding

* Binary encoding:
— 1.e., for four states, 00, 01, 10, 11
e One-hot encoding
— One state bit per state
— Only one state bit HIGH at once
— 1.e., for 4 states, 0001, 0010, 0100, 1000

— Requires more flip-flops
— Often next state and output logic Is simpler

SEQUENTIAL LOGIC DESIGN
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E Moore vs. Mealy FSM

oy

e} .

LiJie Alyssa P. Hacker has a snail that crawls down a paper tape
Q) with 1’s and 0s on it. The snail smiles whenever the last two
H digits it has crawled over are 01. Design Moore and Mealy
(5 FSMs of the snail’s brain, 7
o Qr]N
- =

= g
Zi (i

Ly (=)
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O r—il

a 1

%

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <46> ES



N

Moore FSM
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Mealy FSM

Reset
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Mealy FSM: arcs indicate input/output
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O

A

Wy

Q) Current

U State Inputs Next State
Nl

8' 0 0 0
! 0 0 1
=~ 0 1 0
S: 0 1 1
FE: 1 0 0
gi 1 0 1
Q

Wy

g
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Moore FSM State Transition Table

State Encoding

S0 00
S1 01
S2 10
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O

Y

Wy

Q‘ Current

@7 State Inputs Next State
Nl

g 0 0 0 0 1
] 0 0 1 0 0
=~ 0 1 0 0 1
S; 0 1 1 1 0
FE: 1 0 0 0 1
gi 1 0 1 0 0
g 51 = SA

Y S, =A

© Digital Design and Computer Architecture, 2" Edition, 2012

Moore FSM State Transition Table

State Encoding

S0 00
S1 01
S2 10
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Current Next
State Input  State Output

SEQUENTIAL LOGIC DESIGN
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Mealy FSM State Transition & Output Table

State Encoding

S0

00

S1

01
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Current Next

State Input  State Output

R =] O[O
ROl |0
O, |O|F

R OO |O

SEQUENTIAL LOGIC DESIGN
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Mealy FSM State Transition & Output Table

State Encoding
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00

S1

01
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Moore FSM Schematic
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Factoring State Machines

 Break complex FSMs into smaller interacting
FSMs

e Example: Modify traffic light controller to have
Parade Mode.
— Two more inputs: P, R

— When P =1, enter Parade Mode & Bravado Blvd
light stays green

— When R =1, leave Parade Mode

SEQUENTIAL LOGIC DESIGN
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<=8 Parade FSM
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|y
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WL uUnfactored FSM »—>

Q[ R=> controller [ La
T.—» FSM | .,

H: T,—> B
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- ] e !
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Unfactored FSM
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Factored FSM

S1
L,: yellow
Lg: red

OGIC DESIGN
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ENTIAL L
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M+ T,
Lights FSM
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FSM Design Procedure

o |dentify inputs and outputs

o Sketch state transition diagram
o \Write state transition table

o Select state encodings

For Moore machine:
— Rewrite state transition table with state encodings
—  Write output table

 For a Mealy machine:

— Rewrite combined state transition and output table with state
encodings

 Write Boolean equations for next state and output Ioglc
«  Sketch the circuit schematic

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <61> ELSEVIER
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* Flip-flop samples D at clock edge
e D must be stable when sampled

o Similar to a photograph, D must be stable
around clock edge

 If not, metastability can occur

SEQUENTIAL LOGIC DESIGN
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g Input Timing Constraints

ij

m * Setup time: i, = time before clock edge data must be

Q stable (i.e. not changing)

H » Hold time: t,,,4 = time after clock edge data must be stable

O . Aperture time: t, = time around clock edge data must be

9 stable (ta = 1:setup + thold)

-l

E CLK ,:{

" o

S IR G OO0

Wy < t >
b5
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Output Timing Constraints

O

Nr

v _ _

L - Propagation delay: t,., = time after clock edge that the
Q output Q Is guaranteed to be stable (i.e., to stop changing)
H « Contamination delay: t., = time after clock edge that Q
O] might be unstable (i.e., start changing)

Q |

~ CLK

~ D

S Q A 8

I~ | | |

L DI TN

8 tqu |

i

vy
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Dynamic Discipline

» Synchronous sequential circuit inputs must be
stable during aperture (setup and hold) time
around clock edge

 Specifically, inputs must be stable
— at least ty,, before the clock edge
— at least until t, 4 after the clock edge

SEQUENTIAL LOGIC DESIGN

" _ .I‘)
qﬂ‘
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Dynamic Discipline

 The delay between registers has a
minimum and maximum delay, dependent
on the delays of the circuit elements

SEQUENTIAL LOGIC DESIGN

CLK CLK

T Qe P2 7,
(a) R1 R2
< Te o

CLK \ |
T T3 |
S — O —

(b) 5
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before clock edge

L LOGIC DESIGN

| C%K C%K
| Ql[ ¢ JDZ
Ei R1 R2
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Z CLK \ |8
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Setup Time Constraint

e The input to register R2 must be stable at least t

 Depends on the maximum delay from register R1
through combinational logic to R2

setup

Chapter 3 <67>
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before clock edge

L LOGIC DESIGN

| C%K C%K
| Ql[ ¢ JDZ
Ei R1 R2

' T
| < c >
Z CLK \ |8
| ) |
> QL I (% ( |
| l | |
S oo mmmE
W SENPIL"ILT

© Digital Design and Computer Architecture, 2" Edition, 2012

Setup Time Constraint

e The input to register R2 must be stable at least t

 Depends on the maximum delay from register R1
through combinational logic to R2

setup
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before clock edge
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Setup Time Constraint

e The input to register R2 must be stable at least t

 Depends on the maximum delay from register R1
through combinational logic to R2

setup

T

Lo

> 1

C_

<T. -

pcq

C

g+t

setup
(tpcq t 1:setu p)
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hold

g Hold Time Constraint
Nr
L« Depends on the minimum delay from register R1
Q through the combinational logic to R2
H  The input to register R2 must be stable for at least
O t, .1 after the clock edge
9 CLK Cll_K
| Q1( D2
~J € ) t . <
SE R1 Ro hold
~ | |
Zi CLK | \ ,ll’_
g QL | XX |
U b2 R
[M[ Itccq tcd |
” :



hold

Hold Time Constraint

1:hold < 1:ccq
1:cd >

T tcd

O
Nr
L« Depends on the minimum delay from register R1
Q through the combinational logic to R2
H  The input to register R2 must be stable for at least
O t, .1 after the clock edge
9 CLK Cll_K
- Ql[ ¢ }DZ
qk R1 R2
-
o | |
Zi CLK | \ ,ll’_
g QL | XX |
U b2 R
[M[ Itccq tcd |
L] |t |
|
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hold

Hold Time Constraint

1:cd > thold B 1:ccq

1:hold < 1:ccq T tcd

O
Nr
L« Depends on the minimum delay from register R1
Q through the combinational logic to R2
H  The input to register R2 must be stable for at least
O t, .1 after the clock edge
9 CLK Cll_K
- Ql[ ¢ }DZ
qk R1 R2
-
o | |
Zi CLK | \ ,ll’_
g QL | XX |
U b2 R
[M[ Itccq tcd |
L] |t |
|
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Timing Analysis

cik  Timing Characteristics

<
g;
E{
t- -
w.
Q

- ——

o =

—

tcd -

ENTIAL L

———

Setup time constraint:

SEQU
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teg =30ps
theg =200PS
toetup = 60 PS
thota = 70 PS
}qg: [ t,y =35ps
LIty =25ps

Hold time constraint:

tccq + tcd > thold ?
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Timing Analysis

cik  Timing Characteristics

<
9
g
[ _
S -
w_
Q
]

——

t,g =3 %35 ps =105 ps

—

t.y=25ps

ENTIAL

———

Setup time constraint:
T.> (50 + 105 + 60) ps = 215 ps
f.=1/T.=4.65 GHz

SEQU
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teg =30ps
theg =200PS
toetup = 60 ps
X
thow =70 ps
Y
&
A t,y =35ps
EJ_ ty =25ps

Hold time constraint:
tccq + tcd > thold ?

(30 + 25) ps>70 ps ? No!
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Timing Analysis

=
1
m Add buffers to the short paths: Timing Characteristics
_ CLK CLK _
Qo <205
U_ 7 t =50 ps
L] pcq
G; VB t =60 ps
_| setup

W\ t =70 ps
0 Vale X7 X hold Y
ol N A i
— VD DJV—Y I3 _
Sa B || ol [ t,y =35ps
m,~: |ty =25ps
=z
[mli tcd =
D( Setup time constraint: Hold time constraint:
u 7;: 2 tccq + tcd > thold ?
L
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Timing Analysis

<
9
0
Q‘ CLK
&
O
0_

Add buffers to the short paths:

CLK
NA
N 1B
Vale X TYX
| il R L1
I ~D DLV_Y
- _

t,g =3 %35 ps =105 ps

t.y=2x25ps=>50ps

ENTIAL L

=1

Setup time constraint:
T.> (50 + 105 + 60) ps = 215 ps
f.=1/T.=4.65 GHz

SEQU
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Timing Characteristics

teg =30ps
theg =200PS
toetup = 60 PS
thota = 70 PS
}qg: [ t,y =35ps
LIty =25ps

Hold time constraint:
tccq + tcd > thold ?

(30 + 50) ps > 70 ps ? Yes!
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Clock Skew

e The clock doesn’t arrive at all registers at same time
e Skew: difference between two clock edges

* Perform worst case analysis to guarantee dynamic
discipline is not violated for any register — many

registers in a system!
delay CLK

CLK1{
CLK2/ |

CLK } }

. E L
ER
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LOGIC DESIG

Setup Time Constraint with Skew

e |n the worst case, CLK2 is earlier than CLK1

CLlKl CL|K2
Q1 ¢ D2
L )
R1 R2
< LE >
: CLK1
Pi CLKZZ // II \ \\ X: ; ; ]I
Z: Q1 NXXX% ( |
g P R LSO G
| | N
U ‘tpcqy‘ tpd | tsetluptskew
Ly
)
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Setup Time Constraint with Skew

<
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e |n the worst case, CLK2 is earlier than CLK1

CHKl CHKZ
Q1 D2
€ )
R1 R2
CLK1 vy
_ZZZ}/\ AN | T.2 tpcq t tpd t 1:setup + Toew
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C'—K_ZZZZ/IV ANRNY /;7?] tog <
Q1 MX%

—
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D2

§

t.. t

setup “skew
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Setup Time Constraint with Skew

e |n the worst case, CLK2 is earlier than CLK1

T >t
t

pcq t tpd t 1:setup

pd = Tc B (tpcq t 1:setup t

+1

skew

1:skew)
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Hold Time Constraint with Skew

* |n the worst case, CLK2 is later than CLK1

TIAL LOGIC DESIGN

CLlKl CL|K2
Q1 D2
L ¢ )
R1 R2
I I
CLKL///T AN ///¥
| | tcc T 1:cd >
CLKzgm’l T\ W g
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Ly D2 | QOO
U 1:ccq: 1:cd
Q |
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: f
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Hold Time Constraint with Skew

* |n the worst case, CLK2 is later than CLK1

TIAL LOGIC DESIGN

CI_|K1 CL|K2
Q1 D2
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R1 R2
I I
CLKL///T ANRA ///¥
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Hold Time Constraint with Skew

<
G
|y
A |
H * |n the worst case, CLK2 is later than CLK1
| CLK1 CLK2
) 101 ¢ el
G { J
0- R1 R2
| |
:': CLK1/7TT N\ JTTT
Q‘ | | tcc + 1:cd > thold + tskew
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Violating the Dynamic Discipline

* Asynchronous (for example, user)
. - - - t t
Inputs might violate the dynamic =, "
discipline K

CLK « >
| | aperturei
N LY
Q | S
D i/ =
| o
Q | 8
D / =
7 8
Q O

B ey
3 ] 5,‘.
L F
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Metastability

e Bistable devices: two stable states, and a metastable
state between them

* Flip-flop: two stable states (1 and 0) and one
metastable state

o |f flip-flop lands in metastable state, could stay there
for an undetermined amount of time

metastable

stable stable

@ @

SEQUENTIAL LOGIC DESIGN

Lisll
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Flip-Flop Internals

* Flip-flop has feedback: if Q is somewhere between
1 and 0O, cross-coupled gates drive output to either

rail (1 or 0) R m. o
s NrlQ

o Metastable signal: if it hasn’t resolvedto 1 or 0

 If flip-flop input changes at random time, probability
that output Q is metastable after waiting some time, t:
ID(tres > t) - (TOI Tc) e_t/T

t.. : timetoresolvetol1orO
Ty, T: properties of the circuit

SEQUENTIAL LOGIC DESIGN
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<=8 Metastability

O

A

L« Intuitively:

Q[ — T,/T.: probability input changes at a bad time (during aperture)
% Pltes > 1) = (Ty/T,) €

O{ — 1. time constant for how fast flip-flop moves away from

el metastability

N\l I:)(tres > t) - (TO/ Tc) e_t/T

<

I~ e . . .
z  In short, If flip-flop samples metastable input, if you wait
W long enough (t), the output will have resolved to 1 or 0
D with high probability.

i

v

& __
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<=8 Synchronizers
T
L« Asynchronous inputs are inevitable (user interfaces,
Q systems with different clocks interacting, etc.)
H « Synchronizer goal: make the probability of failure (the
G output Q still being metastable) low
9{ « Synchronizer cannot make the probability of failure O
El
| CLK
= \
( n
S REI
S
Wy
w

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <88> ES



Synchronizer Internals

« Synchronizer: built with two back-to-back flip-flops
e Suppose D is transitioning when sampled by F1
* Internal signal D2 has (T; - ts,,) time to resolve to 1

TIAL LOGIC DESIGN

or O CLK CLK
| S m D2 m °
F1 F2
. T .
< q
z CLK | \ |

; | . |

| | /]
gﬁ D2 : >metastab|e \ ﬂ:\ :

f_ | | |
8 ? | | :\%
v < e

t | t

res setup pcq K. .
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Synchronizer Probability of Failure

For each sample, probability of failure is:

P(failure) = (T/T,) e~ t 0

LOGIC DESIGN

Setup
Cll_K Cll_K
D D2 0
F1 F2
] . L :
< € q
= _'R\ '
24 I ! I
* | | |
[MI D2 | metastable ./ |
= | | T
> @ e
I |( I
> < »
w | t ot It l

res setup pcq
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% Synchronizer Mean Time Between Failures
4
H‘  |f asynchronous input changes once per second,
d probability of failure per second Is P(failure).
@  If input changes N times per second, probability of failure
0 ner second is:
= P(failure)/second = (NT/T) e~ L )
Ej « Synchronizer fails, on average, 1/[P(failure)/second]
E§ « Called mean time between failures, MTBF:

|
8 MTBF = 1/[P(failure)/second] = (T/NT) elT, - Ly )"
Wy _
w

Al e
N
< )
"
:ﬁ'
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N

Example Synchronizer

N =1 events per second
* What is the probability of failure? MTBF?

1 " % o —

EN

SEQU
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gt CLK - CLK

Q D Q
@ F1 F2

-

8 e Suppose: T. =1/500MHz=2ns t© =200ps
| Ty =150 ps teetup = 100 ps
<

Ty

-
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Example Synchronizer

SEQU

© Digital Design and Computer Architecture, 2" Edition, 2012

9

m CLK CLK

Q[ D D2 Q
U' F1 F2

oy

8 e Suppose: T. =1/500MHz=2ns t© =200ps
-~ To =150 ps tiwp = 100 ps
]| N =1 events per second

<L - Whatis the probability of failure? MTBF?

m':i P(failure) = (150 ps/2 ns) g-(1.9 1s)l200 ps
" = 5.6 x 10

el P(failure)/second = 10 x (5.6 x 10°)

= 5.6 x 10/ second
MTBF = 1/[P(failure)/second] = 5 hours

Chapter 3 <93>
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Ken into multiple stages
pipelining

e, an assembly line

<

O

Nr

% -
~ * Two types of parallelism:
@' — Spatial parallelism

—

O

9 — Temporal parallelism
~i e task Is bro

E; e also callec

Z: o for examp

Y]

3

W

)
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Parallelism

 duplicate hardware performs multiple tasks at once

ELSEVIER



Parallelism Definitions

» Token: Group of Inputs processed to produce
group of outputs

« Latency: Time for one token to pass from
start to end

* Throughput: Number of tokens produced
per unit time

Parallelism increases throughput

SEQUENTIAL LOGIC DESIGN

ALt
N 3
= {
P T
/)
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N

Parallelism Example

O

Ty

vy

H‘ « Ben Bitdiddle bakes cookies to celebrate traffic light
i controller installation

H e 5 minutes to roll cookies

8 e 15 minutes to bake

=~d. * What is the latency and throughput without parallelism?

~

e~

@El

Wy

3

i

g

%
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Parallelism Example

Ben Bitdiddle bakes cookies to celebrate traffic light
controller installation

e 5 minutes to roll cookies
e 15 minutes to bake
What is the latency and throughput without parallelism?

Latency =5 + 15 = 20 minutes = 1/3 hour
Throughput = 1 tray/ 1/3 hour = 3 trays/hour

TIAL LOGIC DESIGN

EN

SEQU
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Parallelism Example

 \What is the latency and throughput if Ben
uses parallelism?

— Spatial parallelism: Ben asks Allysa P. Hacker to
help, using her own oven

— Temporal parallelism:
e two stages: rolling and baking
e He uses two trays

* While first batch is baking, he rolls the
second batch, etc.

SEQUENTIAL LOGIC DESIGN

" ] ,I‘)
'z!tf
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Spatial Parallelism

Latency:

<
O
a
W
Q‘ 0 5 10 15 20 25
H_
O
Q

time to
first tray
30 35 40 45 50
| | | | | | | | | | | g
Time
Tray 1
S Roll
T2 Tray2 Alyssa 1
g2
& S Tray3
o
NI Tray 4 Alyssa 2 Legend
] \/
:i
oy
kl
> Latency = ?
L

Throughput =?

SEQU
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N

Tray 1
.y
% E Tray 2
& S Tray3
o
Tray 4

1 N o —— ol

TIAL LOGIC DESIG

EN

SEQU

Spatial Parallelism

Alyssa 1

Alyssa 2

Latency =5 + 15 = 20 minutes = 1/3 hour
Throughput = 2 trays/ 1/3 hour = 6 trays/hour

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <100>

Latency:
time to
first tray
0 5 10 15 20 25 30 35 40 45 50
| ] ] ] ] ] ] ] ] ] ] .
Time
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Latency:
time to
first tray

Temporal Parallelism

TB,E Tray 1
O —
22 Tray?2
i3

I- Fa Tray3

| \/

i

E

i

[3

. Latency = ?

Throughput = ?

e N

SEQUENTIAL LOGIC DESIGN
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Temporal
Parallelism

Temporal Parallelism

Latency:
time to
first tray

0 5 10 15 20 25 30 35 40 45 50

Latency =5 + 15 = 20 minutes = 1/3 hour
Throughput = 1 trays/ 1/4 hour = 4 trays/hour

Using both techniques, the throughput would be 8 trays/hour

P
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