Chapter 5

Digital Design and Computer Architecture, $2^{\text {nd }}$ Edition

David Money Harris and Sarah L. Harris

Chapter 5 :: Topics

- Introduction
- Arithmetic Circuits
- Number Systems
- Sequential Building Blocks
- Memory Arrays
- Logic Arrays

| Application
 Software |
| ---: | ---: |
| Operating |
| Systems |
| Architecture |
| world!" |

Introduction

- Digital building blocks:
- Gates, multiplexers, decoders, registers, arithmetic circuits, counters, memory arrays, logic arrays
- Building blocks demonstrate hierarchy, modularity, and regularity:
- Hierarchy of simpler components
- Well-defined interfaces and functions
- Regular structure easily extends to different sizes
- Will use these building blocks in Chapter 7 to build microprocessor

1-Bit Adders

Half
Adder

$$
\begin{aligned}
& \mathrm{S}= \\
& \mathrm{C}_{\text {out }}=
\end{aligned}
$$

Full
Adder

$C_{\text {in }}$	A	B	$C_{\text {out }}$	S
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

$$
\begin{aligned}
& \mathrm{S}= \\
& \mathrm{C}_{\text {out }}=
\end{aligned}
$$

1-Bit Adders

Half
Adder

A	B	$C_{\text {out }}$	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0
$=$			
$C_{\text {out }}$	$=$		

Full

Adder

$C_{\text {in }}$	A	B	$C_{\text {out }}$	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$
\begin{aligned}
& \mathrm{S}= \\
& \mathrm{C}_{\mathrm{out}}=
\end{aligned}
$$

1-Bit Adders

Half
 Adder

A	B	$\mathrm{C}_{\text {out }}$	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$
\begin{aligned}
& S=A \oplus B \\
& C_{\text {out }}=A B
\end{aligned}
$$

Full
Adder

$C_{\text {in }}$	A	B	$C_{\text {out }}$	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$S \quad=A \oplus B \oplus C_{\text {in }}$

$$
C_{\text {out }}=A B+A C_{i n}+B C_{i n}
$$

Multibit Adders (CPAs)

- Types of carry propagate adders (CPAs):
- Ripple-carry
(slow)
- Carry-lookahead
(fast)
- Prefix
(faster)
- Carry-lookahead and prefix adders faster for large adders but require more hardware

Symbol

Ripple-Carry Adder

- Chain 1-bit adders together
- Carry ripples through entire chain
- Disadvantage: slow

Ripple-Carry Adder Delay

$$
t_{\text {ripple }}=N t_{F A}
$$

where $t_{F A}$ is the delay of a full adder

Carry-Lookahead Adder

- Compute carry out ($C_{\text {out }}$) for k-bit blocks using generate and propagate signals
- Some definitions:
- Column i produces a carry out by either generating a carry out or propagating a carry in to the carry out
- Generate $\left(G_{i}\right)$ and propagate $\left(P_{i}\right)$ signals for each column:
- Column i will generate a carry out if A_{i} AND B_{i} are both 1 .

$$
G_{i}=A_{i} B_{i}
$$

- Column i will propagate a carry in to the carry out if A_{i} OR B_{i} is 1 .

$$
P_{i}=A_{i}+B_{i}
$$

- The carry out of column $i\left(C_{i}\right)$ is:

$$
C_{i}=A_{i} B_{i}+\left(A_{i}+B_{i}\right) C_{i-1}=G_{i}+P_{i} C_{i-1}
$$

Carry-Lookahead Addition

- Step 1: Compute G_{i} and P_{i} for all columns
- Step 2: Compute G and P for k-bit blocks
- Step 3: $C_{i n}$ propagates through each k-bit propagate/generate block

Carry-Lookahead Adder

- Example: 4-bit blocks ($G_{3: 0}$ and $P_{3: 0}$) :

$$
\begin{aligned}
& G_{3: 0}=G_{3}+P_{3}\left(G_{2}+P_{2}\left(G_{1}+P_{1} G_{0}\right)\right. \\
& P_{3: 0}=P_{3} P_{2} P_{1} P_{0}
\end{aligned}
$$

- Generally,

$$
\begin{aligned}
G_{i: j} & =G_{i}+P_{i}\left(G_{i-1}+P_{i-1}\left(G_{i-2}+P_{i-2} G_{j}\right)\right. \\
P_{i: j} & =P_{i} P_{i-1} P_{i-2} P_{j} \\
C_{i} & =G_{i: j}+P_{i: j} C_{i-1}
\end{aligned}
$$

32-bit CLA with 4-bit Blocks

Carry-Lookahead Adder Delay

For N-bit CLA with k-bit blocks:

$$
\begin{array}{ll}
\boldsymbol{t}_{C L A}=\boldsymbol{t}_{p g}+\boldsymbol{t}_{p g _ \text {block }}+(\mathbf{N} / \boldsymbol{k}-\mathbf{1}) \boldsymbol{t}_{\mathrm{AND} _\mathrm{OR}}+\boldsymbol{k} t_{\mathrm{FA}} \\
-t_{p g}: & \text { delay to generate all } P_{i}, G_{i} \\
-t_{\text {pg_block }}: & \text { delay to generate all } P_{i: \mathrm{j}}, G_{i: j} \\
-t_{\text {AND_or }}: & \text { delay from } C_{\text {in }} \text { to } C_{\text {out }} \text { of final AND/OR gate in } k \text {-bit CLA } \\
\text { block }
\end{array}
$$

An N-bit carry-lookahead adder is generally much faster than a ripple-carry adder for $N>16$

Prefix Adder

- Computes carry in (C_{i-1}) for each column, then computes sum:

$$
S_{i}=\left(A_{i} \oplus B_{i}\right) \oplus C_{i}
$$

- Computes G and P for 1-, 2-, 4-, 8-bit blocks, etc. until all G_{i} (carry in) known
- $\log _{2} N$ stages

Prefix Adder

- Carry in either generated in a column or propagated from a previous column.
- Column -1 holds C_{in}, so

$$
G_{-1}=C_{i n}, P_{-1}=0
$$

- Carry in to column $i=$ carry out of column $i-1$:

$$
C_{i-1}=G_{i-1:-1}
$$

$G_{i-1:-1}$: generate signal spanning columns $i-1$ to -1

- Sum equation:

$$
S_{i}=\left(A_{i} \oplus B_{i}\right) \oplus G_{i-1:-1}
$$

- Goal: Quickly compute $G_{0:-1}, G_{1:-1}, G_{2:-1}, G_{3:-1}, G_{4:-1}, G_{5:-1}$, ... (called prefixes)

Prefix Adder

- Generate and propagate signals for a block spanning bits i:j:

$$
\begin{aligned}
& G_{i: j}=G_{i: k}+P_{i: k} G_{k-1: j} \\
& P_{i: j}=P_{i: k} P_{k-1: j}
\end{aligned}
$$

- In words:
- Generate: block i:j will generate a carry if:
- upper part (i:k) generates a carry or
- upper part propagates a carry generated in lower part (k-1:j)
- Propagate: block i:j will propagate a carry if both the upper and lower parts propagate the carry

Prefix Adder Schematic

Legend
© Digital Design and Computer Architecture, $2^{\text {nd }}$ Edition, 2012

Chapter 5 <18>

Prefix Adder Delay

$$
t_{P A}=t_{p g}+\log _{2} N\left(t_{p g _p r e f i x}\right)+t_{\mathrm{XOR}}
$$

- $\boldsymbol{t}_{p g}$: delay to produce $P_{i} G_{i}$ (AND or OR gate)
- $\boldsymbol{t}_{\text {pg_prefix }}$: delay of black prefix cell (AND-OR gate)

Adder Delay Comparisons

Compare delay of: 32-bit ripple-carry, carry-lookahead, and prefix adders

- CLA has 4-bit blocks
- 2-input gate delay $=100 \mathrm{ps}$; full adder delay $=300 \mathrm{ps}$

Adder Delay Comparisons

Compare delay of: 32-bit ripple-carry, carry-lookahead, and prefix adders

- CLA has 4-bit blocks
- 2-input gate delay $=100 \mathrm{ps}$; full adder delay $=300 \mathrm{ps}$

$$
\begin{aligned}
t_{\text {ripple }} & =N t_{F A}=32(300 \mathrm{ps}) \\
& =9.6 \mathrm{~ns} \\
t_{C L A} & =t_{p g}+t_{p g _ \text {block }}+(N / k-1) t_{\mathrm{AND} _\mathrm{OR}}+k t_{F A} \\
& =[100+600+(7) 200+4(300)] \mathrm{ps} \\
& =3.3 \mathrm{~ns} \\
t_{P A} & =t_{p g}+\log _{2} N\left(t_{\text {pg_prefix }}\right)+t_{\mathrm{XOR}} \\
& =\left[100+\log _{2} 32(200)+100\right] \mathrm{ps} \\
& =1.2 \mathrm{~ns}
\end{aligned}
$$

Symbol Implementation

Comparator: Equality

Symbol

Equal

Implementation

Comparator: Less Than

Arithmetic Logic Unit (ALU)

$F_{2: 0}$	Function
000	$\mathrm{~A} \& \mathrm{~B}$
001	$\mathrm{~A} \mid \mathrm{B}$
010	$\mathrm{~A}+\mathrm{B}$
011	not used
100	$\mathrm{~A} \& \sim \mathrm{~B}$
101	$\mathrm{~A} \mid \sim \mathrm{B}$
110	$\mathrm{~A}-\mathrm{B}$
111	SLT

n ALU Design

$\mathrm{F}_{2: 0}$	Function
000	A \& B
001	$\mathrm{~A} \mid \mathrm{B}$
010	$\mathrm{~A}+\mathrm{B}$
011	not used
100	A \& ~B
101	$\mathrm{~A} \mid \sim$ B
110	A - B
111	SLT

Adder Delay Comparisons

Compare delay of: 32-bit ripple-carry, carry-lookahead, and prefix adders

- CLA has 4-bit blocks
- 2-input gate delay $=100 \mathrm{ps}$; full adder delay $=300 \mathrm{ps}$

$$
\begin{aligned}
t_{\text {ripple }} & =N t_{F A}=32(300 \mathrm{ps}) \\
& =9.6 \mathrm{~ns} \\
t_{C L A} & =t_{p g}+t_{p g _ \text {block }}+(N / k-1) t_{\mathrm{AND} _\mathrm{OR}}+k t_{F A} \\
& =[100+600+(7) 200+4(300)] \mathrm{ps} \\
& =3.3 \mathrm{~ns} \\
t_{P A} & =t_{p g}+\log _{2} N\left(t_{\text {pg_prefix }}\right)+t_{\mathrm{XOR}} \\
& =\left[100+\log _{2} 32(200)+100\right] \mathrm{ps} \\
& =1.2 \mathrm{~ns}
\end{aligned}
$$

Set Less Than (SLT) Example

Set Less Than (SLT) Example

- Configure 32-bit ALU for SLT operation: $A=25$ and $B=32$
- $\boldsymbol{A}<\boldsymbol{B}$, so Y should be 32-bit
representation of 1 (0x00000001)
- $F_{2: 0}=111$
- $\boldsymbol{F}_{2}=\mathbf{1}$ (adder acts as subtracter), so $25-32=-7$
- -7 has 1 in the most significant bit ($S_{31}=1$)
- $F_{1: 0}=11$ multiplexer selects $Y=S_{31}($ zero extended $)=$ 0x00000001.

Shifters

- Logical shifter: shifts value to left or right and fills empty spaces with 0's
- Ex: $11001 \gg 2$ =
- Ex: $11001 \ll 2$ =
- Arithmetic shifter: same as logical shifter, but on right shift, fills empty spaces with the old most significant bit (msb).
- Ex: 11001 >>> 2 =
- Ex: $11001 \lll 2$ =
- Rotator: rotates bits in a circle, such that bits shifted off one end are shifted into the other end
- Ex: 11001 ROR 2 =
- Ex: 11001 ROL 2 =

Shifters

- Logical shifter:
- Ex: 11001 >> 2 = 00110
- Ex: 11001 << 2 = 00100
- Arithmetic shifter:
- Ex: $11001 \ggg 2$ = 11110
- Ex: 11001 <<< 2 = 00100
- Rotator:
- Ex: 11001 ROR 2 = 01110
- Ex: 11001 ROL 2 = 00111

Shifter Design

Shifters as Multipliers, Dividers

- $A \ll N=A \times 2^{N}$
- Example: $00001 \ll 2=00100\left(1 \times 2^{2}=4\right)$
- Example: $11101 \ll 2=10100\left(-3 \times 2^{2}=-12\right)$
- $A \gg N=A \div 2^{N}$
- Example: $01000 \ggg 2=00010\left(8 \div 2^{2}=2\right)$
- Example: $10000 \ggg 2=11100\left(-16 \div 2^{2}=-4\right)$

Multipliers

- Partial products formed by multiplying a single digit of the multiplier with multiplicand
- Shifted partial products summed to form result

Decimal		Binary
230	multiplicand	0101
$\times \quad 42$	multiplier	$\times 0111$
460 +920	partial 9660	0101
		0101
	resoducts	0101
		+0000

$230 \times 42=9660$
$5 \times 7=35$

4×4 Divider

Legend

$\mathrm{A} / \mathrm{B}=\mathrm{Q}+\mathrm{R} / \mathrm{B}$
Algorithm:
$\mathrm{R}^{\prime}=0$
for $i=\mathrm{N}-1$ to 0
$\mathrm{R}=\left\{\mathrm{R}^{\prime} \ll 1 . \mathrm{A}_{i}\right\}$
$\mathrm{D}=\mathrm{R}-\mathrm{B}$
if $\mathrm{D}<0, \mathrm{Q}_{i}=0, \mathrm{R}^{\prime}=\mathrm{R}$
else
$\mathrm{Q}_{\mathrm{i}}=1, \mathrm{R}^{\prime}=\mathrm{D}$
$R^{\prime}=R$
Chapter 5 <36>
$\frac{\text { S. }}{\text { ELUL }}$

Number Systems

- Numbers we can represent using binary representations
- Positive numbers
- Unsigned binary
- Negative numbers
- Two's complement
- Sign/magnitude numbers
- What about fractions?

Numbers with Fractions

- Two common notations:
- Fixed-point: binary point fixed
- Floating-point: binary point floats to the right of the most significant 1

Fixed-Point Numbers

- 6.75 using 4 integer bits and 4 fraction bits:

01101100
 0110.1100
 $2^{2}+2^{1}+2^{-1}+2^{-2}=6.75$

- Binary point is implied
- The number of integer and fraction bits must be agreed upon beforehand

Fixed-Point Number Example

- Represent 7.5_{10} using 4 integer bits and 4 fraction bits.

Fixed-Point Number Example

- Represent 7.5_{10} using 4 integer bits and 4 fraction bits.

01111000

Signed Fixed-Point Numbers

- Representations:
- Sign/magnitude
- Two’s complement
- Example: Represent -7.5_{10} using 4 integer and 4 fraction bits
- Sign/magnitude:
- Two's complement:

Signed Fixed-Point Numbers

- Representations:
- Sign/magnitude
- Two’s complement
- Example: Represent -7.5_{10} using 4 integer and 4 fraction bits
- Sign/magnitude:

11111000

- Two's complement:

1. $+7.5: \quad 01111000$
2. Invert bits: 10000111
3. Add 1 to lsb: $\frac{+\quad 1}{10001000}$

Floating-Point Numbers

- Binary point floats to the right of the most significant 1
- Similar to decimal scientific notation
- For example, write 273_{10} in scientific notation:

$$
273=2.73 \times 10^{2}
$$

- In general, a number is written in scientific notation as:

$$
\pm \mathbf{M} \times \mathbf{B}^{\mathbf{E}}
$$

- $\mathrm{M}=$ mantissa
- $\mathrm{B}=$ base
- $\mathrm{E}=$ exponent
- In the example, $\mathrm{M}=2.73, \mathrm{~B}=10$, and $\mathrm{E}=2$

Floating-Point Numbers

- Example: represent the value 228_{10} using a 32-bit floating point representation

We show three versions -final version is called the IEEE 754 floating-point standard

Floating-Point Representation 1

1. Convert decimal to binary (don't reverse steps $1 \& 2$!):

$$
2288_{10}=11100100_{2}
$$

2. Write the number in "binary scientific notation":

$$
\mathbf{1 1 1 0 0 1 0 0}_{2}=1.11001_{2} \times 2^{7}
$$

3. Fill in each field of the 32-bit floating point number:

- The sign bit is positive (0)
- The 8 exponent bits represent the value 7
- The remaining 23 bits are the mantissa

1 bit	8 bits	23 bits
0	00000111	1110010000000000000000
Sign	Exponent	Mantissa

Floating-Point Representation 2

- First bit of the mantissa is always 1 :
$-228_{10}=11100100_{2}=1.11001 \times 2^{7}$
- So, no need to store it: implicit leading 1
- Store just fraction bits in 23-bit field

1 bit	8 bits	23 bits
0	00000111	11001000000000000000000
Sign	Exponent	Fraction

Floating-Point Representation 3

- Biased exponent: bias $=127\left(01111111_{2}\right)$
- Biased exponent $=$ bias + exponent
- Exponent of 7 is stored as:

$$
127+7=134=0 \times 10000110_{2}
$$

- The IEEE 754 32-bit floating-point representation of 228_{10}

1 bit	8 bits	23 bits
0	10000110	11001000000000000000000
Sign	Biased Exponent	Fraction

in hexadecimal: 0×43640000

Floating-Point Example

Write -58.25_{10} in floating point (IEEE 754)

Floating-Point Example

Write -58.25_{10} in floating point (IEEE 754)

1. Convert decimal to binary:
$58.25_{10}=111010.01_{2}$
2. Write in binary scientific notation:
1.1101001×2^{5}
3. Fill in fields:

Sign bit: 1 (negative)
8 exponent bits: $(127+5)=132=10000100_{2}$
23 fraction bits: 11010010000000000000000

1 bit	8 bits	23 bits
1	10000100	11010010000000000000000

Sign Exponent Fraction
in hexadecimal: 0xC2690000

Floating-Point: Special Cases

Number	Sign	Exponent	Fraction
0	X	00000000	00000000000000000000000
∞	0	11111111	00000000000000000000000
$-\infty$	1	11111111	00000000000000000000000
NaN	X	11111111	non-zero

Floating-Point Precision

- Single-Precision:
- 32-bit
- 1 sign bit, 8 exponent bits, 23 fraction bits
- bias $=127$
- Double-Precision:
- 64-bit
- 1 sign bit, 11 exponent bits, 52 fraction bits
- bias = 1023

Floating-Point: Rounding

- Overflow: number too large to be represented
- Underflow: number too small to be represented
- Rounding modes:
- Down
- Up
- Toward zero
- To nearest
- Example: round 1.100101 (1.578125) to only 3 fraction bits
- Down:
1.100
- Up:
1.101
- Toward zero:
1.100
- To nearest:
1.101 (1.625 is closer to 1.578125 than 1.5 is)

Floating-Point Addition

1. Extract exponent and fraction bits
2. Prepend leading 1 to form mantissa
3. Compare exponents
4. Shift smaller mantissa if necessary
5. Add mantissas
6. Normalize mantissa and adjust exponent if necessary
7. Round result
8. Assemble exponent and fraction back into floating-point format

Floating-Point Addition Example

Add the following floating-point numbers: 0x3FC00000

0x40500000

Floating-Point Addition Example

1. Extract exponent and fraction bits

1 bit	8 bits	23 bits
0	01111111	10000000000000000000000
Sign	Exponent	Fraction
1 bit	8 bits	23 bits
0	10000000	10100000000000000000000
Sign	Exponent	Fraction

For first number (N1):
For second number (N2):

$$
\begin{aligned}
& S=0, E=127, F=.1 \\
& S=0, E=128, F=.101
\end{aligned}
$$

2. Prepend leading $\mathbf{1}$ to form mantissa

N1:
1.1

N2: 1.101

Floating-Point Addition Example

3. Compare exponents
$127-128=-1$, so shift N1 right by 1 bit
4. Shift smaller mantissa if necessary shift N1's mantissa: $1.1 \gg 1=0.11\left(\times 2^{1}\right)$
5. Add mantissas

$$
\begin{array}{r}
0.11 \times 2^{1} \\
+\quad 1.101 \times 2^{1} \\
\hline 10.011 \times 2^{1}
\end{array}
$$

Floating Point Addition Example

6. Normalize mantissa and adjust exponent if necessary $10.011 \times 2^{1}=1.0011 \times 2^{2}$
7. Round result

No need (fits in 23 bits)
8. Assemble exponent and fraction back into floating-point format

$$
\mathrm{S}=0, \mathrm{E}=2+127=129=10000001_{2}, \mathrm{~F}=001100 . .
$$

1 bit	8 bits	23 bits
0	10000001	00110000000000000000000
Sign	Exponent	Fraction
	in hexadecimal: 0×40980000	

Counters

- Increments on each clock edge
- Used to cycle through numbers. For example,
- 000, 001, 010, 011, 100, 101, 110, 111, 000, 001...
- Example uses:
- Digital clock displays
- Program counter: keeps track of current instruction executing

Symbol Implementation

Shift Registers

- Shift a new bit in on each clock edge
- Shift a bit out on each clock edge
- Serial-to-parallel converter: converts serial input ($S_{\text {in }}$) to parallel output ($Q_{0: \mathrm{N}-1}$)

Symbol:

Implementation:

Shift Register with Parallel Load

- When Load $=1$, acts as a normal N-bit register
- When Load $=0$, acts as a shift register
- Now can act as a serial-to-parallel converter $\left(\mathrm{S}_{\text {in }}\right.$ to $\left.Q_{0: N-1}\right)$ or a parallel-to-serial converter ($D_{0: N-1}$ to $S_{\text {out }}$)

Memory Arrays

- Efficiently store large amounts of data
- 3 common types:
- Dynamic random access memory (DRAM)
- Static random access memory (SRAM)
- Read only memory (ROM)
- M-bit data value read/ written at each unique N-bit address

Memory Arrays

- 2-dimensional array of bit cells
- Each bit cell stores one bit
- N address bits and M data bits:
- 2^{N} rows and M columns
- Depth: number of rows (number of words)
- Width: number of columns (size of word)

- Array size: depth \times width $=2^{N} \times M$

Memory Array Example

- $2^{2} \times 3$-bit array
- Number of words: 4
- Word size: 3-bits
- For example, the 3-bit word stored at address 10 is 100

Memory Arrays

Memory Array Bit Cells

bitline

Memory Array Bit Cells

bitline

no Memory Array

- Wordline:

- like an enable
- single row in memory array read/written
- corresponds to unique address
- only one wordline HIGH at once

Types of Memory

- Random access memory (RAM): volatile
- Read only memory (ROM): nonvolatile

RAM: Random Access Memory

- Volatile: loses its data when power off
- Read and written quickly
- Main memory in your computer is RAM (DRAM)

Historically called random access memory because any data word accessed as easily as any other (in contrast to sequential access memories such as a tape recorder)

ROM: Read Only Memory

- Nonvolatile: retains data when power off
- Read quickly, but writing is impossible or slow
- Flash memory in cameras, thumb drives, and digital cameras are all ROMs

Historically called read only memory because ROMs were written at manufacturing time or by burning fuses. Once ROM was configured, it could not be written again. This is no longer the case for Flash memory and other types of ROMs.

Types of RAM

- DRAM (Dynamic random access memory)
- SRAM (Static random access memory)
- Differ in how they store data:
- DRAM uses a capacitor
- SRAM uses cross-coupled inverters

Robert Dennard, 1932 -

- Invented DRAM in 1966 at IBM
- Others were skeptical that the idea would work
- By the mid-1970's DRAM in virtually all computers

DRAM

- Data bits stored on capacitor
- Dynamic because the value needs to be refreshed (rewritten) periodically and after read:
- Charge leakage from the capacitor degrades the value
- Reading destroys the stored value

DRAM

bitline

bitline

bitline
bitline

n Memory Arrays Review

DRAM bit cell:

(c) Digital Design and Computer Architecture, $2^{\text {nd }}$ Edition, 2012

n ROM: Dot Notation

0
 Fujio Masuoka, 1944 -

- Developed memories and high speed circuits at Toshiba, 1971-1994
- Invented Flash memory as an unauthorized project pursued during nights and weekends in the late 1970's
- The process of erasing the memory reminded him of the flash of a camera
- Toshiba slow to commercialize the idea; Intel was first to market in 1988
- Flash has grown into a $\$ 25$ billion
\square per year market

ROM Storage

ROM Logic

Example: Logic with ROMs

Implement the following logic functions using a $2^{2} \times 3$-bit ROM:

$$
\begin{aligned}
& -X=A B \\
& -Y=A+B \\
& -Z=A B
\end{aligned}
$$

Example: Logic with ROMs

Implement the following logic functions using a $2^{2} \times 3$-bit ROM:

$$
\begin{aligned}
& -X=A B \\
& -Y=A+B \\
& -Z=A B
\end{aligned}
$$

Logic with Any Memory Array

$\operatorname{Data}_{1}=A_{1}+A_{0}$
$\operatorname{Data}_{0}=\bar{A}_{1} \bar{A}_{0}$

Logic with Memory Arrays

Implement the following logic functions using a $2^{2} \times 3$-bit memory array:

$$
\begin{aligned}
& -X=A B \\
& -Y=A+B \\
& -Z=A B
\end{aligned}
$$

Logic with Memory Arrays

Implement the following logic functions using a $2^{2} \times 3$-bit memory array:
$-X=A B$
$-Y=A+B$
$-Z=A B$

A, B $\quad 2$

Logic with Memory Arrays

Called lookup tables (LUTs): look up output at each input combination (address)

Multi-ported Memories

- Port: address/data pair
- 3-ported memory
- 2 read ports (A1/RD1, A2/RD2)
- 1 write port (A3/WD3, WE3 enables writing)
- Register file: small multi-ported memory

SystemVerilog Memory Arrays

```
// 256 x 3 memory module with one read/write port \(\begin{aligned} & \text { module dmem( } \text { input } \\ & \text { input } \text { logic } \\ & \text { logic[7:0] } \mathrm{clk}, \mathrm{we}, \\ & \text { input } \text { logic }[2: 0] \\ & \mathrm{wd}, \\ & \text { output } \text { logic }[2: 0] \\ &\mathrm{rd}) ;\end{aligned}\)
logic [2:0] RAM[255:0];
assign rd = RAM[a];
always @(posedge clk) if (we)
RAM[a] <= wd;
endmodule
```


Logic Arrays

- PLAs (Programmable logic arrays)
- AND array followed by OR array
- Combinational logic only
- Fixed internal connections
- FPGAs (Field programmable gate arrays)
- Array of Logic Elements (LEs)
- Combinational and sequential logic
- Programmable internal connections

PLAs

- $X=\bar{A} \bar{B} C+A B \bar{C}$
- $Y=A \bar{B}$

FPGA: Field Programmable Gate Array

- Composed of:
- LEs (Logic elements): perform logic
- IOEs (Input/output elements): interface with outside world
- Programmable interconnection: connect LEs and IOEs
- Some FPGAs include other building blocks such as multipliers and RAMs

General FPGA Layout

LE: Logic Element

- Composed of:
- LUTs (lookup tables): perform combinational logic
- Flip-flops: perform sequential logic
- Multiplexers: connect LUTs and flip-flops

Altera Cyclone IV LE

- The Spartan CLB has:
- 1 four-input LUT
- 1 registered output
- 1 combinational output

LE Configuration Example

Show how to configure a Cyclone IV LE to perform the following functions:

$$
\begin{aligned}
& -X=\bar{A} \overline{B C}+A B \bar{C} \\
& -Y=A \bar{B}
\end{aligned}
$$

n LE Configuration Example

Show how to configure a Cyclone IV LE to perform the following functions:

$$
\begin{aligned}
& -X=\bar{A} \overline{B C}+A B \bar{C} \\
& -Y=A \bar{B}
\end{aligned}
$$

(A)	(B)	(c)		(x)
data 1	data 2	data 3	data 4	LUT output
0	0	0	X	0
0	0	1	X	1
0	1	0	X	0
0	1	1	X	0
1	0	0	X	0
1	0	1	X	0
1	1	0	X	1
1	1	1	X	0

(A) (B)
(Y)

data 1	data 2	data 3	data 4	LUT output
0	0	X	X	0
0	1	X	X	0
1	0	X	X	1
1	1	X	X	0

FPGA Design Flow

Using a CAD tool (such as Altera’s Quartus II)

- Enter the design using schematic entry or an HDL
- Simulate the design
- Synthesize design and map it onto FPGA
- Download the configuration onto the FPGA
- Test the design

