
CS533
Intelligent Agents and Decision Making

Infinite Horizon Markov Decision Problems

1. Some MDP formulations use a reward function R(s, a) that depends on the action taken in a
state or a reward function R(s, a, s′) that also depends on the result state s′ (we get reward
R(s, a, s′) when we take action a in s and then transition to s′). Write the Bellman optimality
equation with discount factor β for each of these two formulations.

Solution: Recall that the Bellman equation for the case of a reward function R(s) that only
depends on the state is as follows:

V ∗(s) = R(s) + βmax
a∈A

∑
s′∈S

T (s, a, s′)V ∗(s′)

For the case of a state-action reward function R(s, a) we simply need to move the reward
function inside the max over actions.

V ∗(s) = max
a∈A

R(s, a) + β
∑
s′∈S

T (s, a, s′)V ∗(s′)

For the case of a state-action-state reward function R(s, a, s′) we need to move the reward
into the expectation since it depends on the next state.

V ∗(s) = max
a∈A

∑
s′∈S

T (s, a, s′)
(
R(s, a, s′) + βV ∗(s′)

)
2. In this exercise you will prove that the Bellman Backup operator is a contraction operator.

(a) Prove that, for any two functions f and g,

|max
a

f(a)−max
a

g(a)| ≤ max
a
|f(a)− g(a)|.

Solution: Assume without loss of generality that maxa f(a) ≥ maxa g(a) (if not then
just interchange f and g, which will not change the absolute value). Let a∗ = arg maxa f(a).
We have that

|max
a

f(a)−max
a

g(a)| = f(a∗)−max
a

g(a)

≤ f(a∗)− g(a∗) (must be non-negative)

= |f(a∗)− g(a∗)|
≤ max

a
|f(a)− g(a)|

The first equality follows from our assumption, the second inequality from the definition
of max, the third equality from the definition of absolute value, and the fourth inequality
from the definition of max.

(b) Use the above result in order to prove that the Bellman Backup operator B[·] is a
contraction mapping. That is, prove that for any two value function V and V ′,

||B[V]−B[V ′]|| ≤ β||V − V ′||

where B is the Bellman backup operator, β is the discount factor, and || · || is the max
norm. By the definition of the max norm, this is equivalent to proving that for any state
s,

|B[V](s)−B[V ′](s)| ≤ β||V − V ′||.

Solution: We show that for any state s,

|B[V](s)−B[V ′](s)| ≤ β||V − V ′||.

|B[V](s)−B[V ′](s)| = |R(s) + max
a

β
∑
s′

T (s, a, s′)V (s′)−R(s)−max
a

β
∑
s′

T (s, a, s′)V ′(s′)|

= |max
a

β
∑
s′

T (s, a, s′)V (s′)−max
a

β
∑
s′

T (s, a, s′)V ′(s′)|

≤ max
a
|β
∑
s′

T (s, a, s′)V (s′)− β
∑
s′

T (s, a, s′)V ′(s′)| (from part a)

= max
a

β|
∑
s′

T (s, a, s′)
(
V (s′)− V ′(s′)

)
| (basic algebra)

≤ max
a

β
∑
s′

T (s, a, s′)|V (s′)− V ′(s′)|

≤ max
a

β
∑
s′

T (s, a, s′)||V − V ′|| (by the definition of max norm)

= max
a

β||V − V ′|| (the sum over s’ is 1 for any a)

= β||V − V ′||

3. Consider a trivially simple MDP with two states S = {s0, s1} and a single action A = {a}.
The reward function is R(s0) = 0 and R(s1) = 1. The transition function is T (s0, a, s1) = 1
and T (s1, a, s1) = 1. Note that there is only a single policy π for this MDP that takes action
a in both states.

(a) Using a discount factor β = 1 (i.e. no discounting), write out the linear equations for
evaluating the policy and attempt to solve the linear system. What happens and why?

Solution: Denote the policy by π and for notational simplicity let V0 = V π(s0) and
V1 = V π(s1). The linear equations for the the value function are:

V0 = R(s0) + βV1 = βV1

V1 = R(s1) + βV1 = 1 + βV1

which for the case of β = 1 simplifies to the following.

V0 = V1

V1 = 1 + V1

Clearly this system has no solution, which is an indication that the policy does not have
a well defined finite value function.

(b) Repeat the previous question using a discount factor of β = 0.9. Solution: For β = 0.9
we get the following system.

V0 = 0.9V1

V1 = 1 + 0.9V1

This is easily solved to get V0 = 9 and V1 = 10.

This shows how including a discount factor creates a well conditioned system, which is the
case for any MDP provided that β ∈ [0, 1).

4. The Bellman Backup operator satisfies the monotonicity property, which states that for any
two value functions V and V ′, if V ≤ V ′, then B[V] ≤ B[V ′]. Prove this monotonicity
property of B.

Solution: Recall that V ≤ V ′ implies that for all states s, V (s) ≤ V ′(s). We now show that
if V ≤ V ′, then for any state s, B[V](s) − B[V ′](s) ≤ 0 which is equivalent to saying that
B[V] ≤ B[V ′].

B[V](s)−B[V ′](s) = R(s) + max
a

β
∑
s′

T (s, a, s′)V (s′)−R(s)−max
a

β
∑
s′

T (s, a, s′)V ′(s′)

= max
a

β
∑
s′

T (s, a, s′)V (s′)−max
a

β
∑
s′

T (s, a, s′)V ′(s′)

≤ max
a

β
∑
s′

T (s, a, s′)V (s′)−max
a

β
∑
s′

T (s, a, s′)V (s′) (since V ≤ V ′)

= 0

5. In class we presented the policy iteration algorithm, which used a “greedy” policy improve-
ment operation. That is, the improved policy π′ at each iteration selected the action that
maximized the one-step-look ahead value:

π′(s) = arg max
a∈A

∑
s′∈S

T (s, a, s′)Vπ(s′)

where π is the current policy.

Consider a version of policy iteration, which uses a non-greedy policy improvement operator.
This operator returns a policy π′ that selects an action in each state that improves over the
current action selected by π if possible. But we do not require that π′ return the best action.
More formally, the non-greedy policy improvement operators returns a policy π′ such that for
any state s, ∑

s′∈S
T (s, π′(s), s′)Vπ(s′) ≥

∑
s′∈S

T (s, π(s), s′)Vπ(s′)

with strict inequality when possible.

Prove that the non-greedy policy improvement operator guarantees that Vπ′ ≥ Vπ with strict
inequality when π is not optimal.

Solution: This proof can almost exactly follow the proof for the greedy version of policy
iteration with a minor modification. First, recall the definition of the restricted Bellman
backup, where we restrict the backup to the actions specified by some policy π.

Bπ[V](s) = R(s) + β
∑
s′

T (s, π(s), s′)V (s′)

The above inequality that relates π′ and π, implies that for all states s,

R(s) + β
∑
s′∈S

T (s, π′(s), s′)Vπ(s′) ≥ R(s) + β
∑
s′∈S

T (s, π(s), s′)Vπ(s′),

where we simply multiplied each side by β and added R(s) to each side. This is equivalent to

Bπ′ [Vπ] ≥ Bπ[Vπ].

Using this relationships we can derive

Vπ = Bπ[Vπ] ≤ Bπ′ [Vπ].

We can now follow the same proof as for the greedy case. In particular, if we let Bk
π′ represent

k applications of Bπ′ , then we can derive that Vπ ≤ Bk
π′ [Vπ] for all k ≥ 1. Since Bk

π′ [Vπ]→ Vπ′

as k →∞, we have shown that Vπ ≤ Vπ′ .

The proof of strict inequality when π is sub-optimal follows the exact same argument as
shown in the notes for the greedy variant of policy iteration.

