
CS533: Intelligent Agents and Decision Making

Assignment 4: Reinforcement Learning for Optimal Parking

You can use any programming language for the project, including MATLAB. In addition to the
write-up materials indicated below, you should also send all of your code to me when you submit
the assignment. Submit the project through Canvas.

In this project you will implement the reinforcement learning algorithm Q-Learning and evaluate
it in the context of the “parking” MDP designed in assignment 3.

Part I: Designing the MDPs

NOTE: The MDP description is just like the one for assignment 3, just repeated here for your
convenience. The key distinction for this project is that Part I asks you to design a simulator for
the environment.
Most people like to park close to wherever they are going. This desire often seems to lead to
irrational behavior—e.g. driving around a parking lot for several minutes looking for a slightly
closer spot. In this project you will put a reinforcement learning agent in this situation and observe
its behavior.

The first part of the project is to design simple MDPs to represent the experience of parking a
car. The MDPs will be very similar, differing primarily in the exact parameter values you choose.
You will then design a simple simulator for these environments that your reinforcement learning
agent can act in. The MDP should capture the following qualitative characteristics of the parking
problem:

1. Parking spots closer to the store are more desirable to the agent.

2. The probability that a parking spot is available is smaller the closer a spot is to the store.

3. It is undesirable to spend much time searching for a spot (i.e. driving around the parking
lot).

4. The parking lot should have two rows of parking spaces A and B (see below figure) that must
be traveled in a loop. These rows are parallel to each other and have n parking spots labeled
A[1], . . . , A[n] and B[1], . . . , B[n]. A[1] and B[1] are closest to the store, A[n] and B[n] are
furthest from the store. In row A the agent can only drive toward the store (i.e. move from
A[i] to A[i− 1]) unless the agent is in A[1] where it can only move to B[1]. When the agent
is in row B it can only move away from the store (i.e. move from B[i] to B[i + 1]), unless
the agent is in row B[n] where it can only move to A[n]. Thus the agent can only drive in a
“circular” motion around rows A and B.

STORE

A[1] B[1]

A[2] B[2]

........

A[n] B[n]

5. The parking spots closest to the store A[1] and B[1] are handicap spots. There is a high cost
(negative reward) for parking in these spots (although they are desirable with respect their
closeness to the store). Also the probability that the handicap spot is available should be
high.

6. If an agent attempts to park in a spot that contains a car, then there is a high cost (negative
reward) since there will be a collision.

7. When a parking trial begins the agent is randomly placed at either B[1] or A[n]. A trial ends
when the agent decides to park, resulting in either a collision or a parked car.

You need to specify an MDP that roughly represents the above features. Here is a suggested
structure, but you are free to try something else.

• State Space: Each state is a triple (L,O, P) where L is a location (one of the A[i] or B[i]),
O is a boolean variable that is TRUE if the spot at that location is occupied by another car,
and P is a boolean variable that is TRUE if the agent is parked (or tried to park) at the
location. Thus there will be 8n states since there are 2n locations and two values of A and
B. Initially P will be FALSE and the trial ends when P is true. That is, any state where P
is true is considered to be a terminal state.

• Actions: There are three actions PARK, DRIVE, and EXIT. When the action DRIVE is
taken the agent is moved to the next parking spot (according to the circular driving pattern
described above) and a coin is flipped to set the value of O. The probability that O is true
should increase for spots closer to the store (the details of this are up to you). However the
probability that O is true for handicap spots A[1] or B[1] should be very high. The DRIVE
action does not change the P variables (P is initialized to be FALSE). When the action PARK
is taken the value of P is set to TRUE and L and O are left unchanged. The action exit does
not change the state for any state where P is false. When P is true the action EXIT causes
the trial to terminate and will always be the last action taken.

• Reward: States where P is FALSE will get a negative reward that represents the cost of
driving. This way if the agent drives for a long time it will accumulate negative reward.
Thus,long driving times will (eventually) look undesirable.

For terminal states (any state where P is TRUE) the reward should be based on the location
and the value of O. Clearly if O is TRUE then we want there to be a large cost, since this
corresponds to a collision. If O is FALSE then we want the reward to based on two factors.
There should be more reward for parking closer to the store, but parking in A[1] or B[1] (the
two closest spots) should be discouraged by giving a smaller reward (since they are handicap
spots).

• Discounting: You can use a discount factor of 1 (no discounting). However, it will be
important to put a horizon limit on the trials, otherwise you might end up driving around
the parking lot for a very long time during learning.

From this discussion the total reward over a trial is the sum of the number of driving steps plus
the parking reward. An agent needs to learn how to balance the time spent searching for a better
spot with the location of the spot. The rational balance will depend on the relative cost of driving
versus parking further away.

Your job is to create a simulator for the “Parking MDP”. Ideally this would allow you to easily
change the value of n and the various parameters of the MDP (rewards and probabilities). There

is no need to provide a nice user interface, it is fine to recompile when you make such changes. The
simulator should allow you to easily interface a learning or non-learning agent to it and run many
trials to collect the average reward.

Note that one approach, perhaps the most elegant approach, would be to develop a general-
purpose simulator that can be given the description of any MDP, using the MDP format from
your previous assignments. Then you could simply feed the simulator the MDP descriptions of the
parking domain that you created for Assignment 2. Create this type of general simulator is not
required.

Select a value of n (say around 10) and select two sets of parameter values. This will result in
completely specifying two MPDs (one for each set of parameter values). Select the parameters so
that you believe that the optimal behavior in each MDP is different.

PART II: Policy Simulation

Here you will measure the performance of some basic policies, which will be used as baselines. You
will collect these measurements for both of the MDPs you specified in step 1. To measure the
performance of a policy you can simply run many trials of the policy (e.g. 1000) and then average
the total reward of the trials.

1. You should measure the performance of a random policy on this MDP. This policy should
select the PARK action with some probability p and DRIVE with probability 1− p. You can
specify p.

2. You should measure the performance of the policy that DRIVES whenever O is TRUE and
when O is FALSE selects PARK with probability p and otherwise DRIVES with probability
1 − p.

3. Try to write your own SIMPLE policies (one for each MDP) that improves on the ones above
and evaluate it. You do not need to work out “optimal policies”, just implement one or two
obvious improvements of the above.

PART III: Reinforcement Learning

Implement a reinforcement learning agent based on the Q-learning algorithm for this environment.
Your goal is to measure the performance of the agent as it learns. I would suggest allowing the

agent to learn for N trials and then measure the performance of the resulting greedy policy (as
you did in PART II for the random policies), then run another N trials of learning and measure
the performance, continue this process of learning and evaluation until the performance does not
improve. Importantly you should use a greedy policy (exploitation) during the evaluation trials.
An exploration policy should only be used during learning. You will want to select N so that you
can see some change in performance.

You should evaluate the learning performance for different parameters of your algorithm and
compare to the performance of your hand-coded policies. Note that you will want to limit the
number of steps for each trajectory to avoid an infinite trial.

What You Need to Produce

1. Provide me with the code for you implementation of the simulator and learning agent.

2. Provide a BRIEF writeup that gives:

(a) Your choices in Part I (copied perhaps from Assignment 2)

(b) The performance of the policies in part II for each MDP (describe the policies that you
designed)

(c) A brief description of the Q-learning algorithm you created (e.g. exploration and learning
rate control) and the performance of the learner for some different parameter settings.
Compare the learners performance to the policies from part II. Describe the learned
behavior of the agent for each MDP. Were the behaviors different? Where they as
expected?

Submit this material through Canvas.

