PAC MAN as Markov Decision Process.

In this document, we formulate Pac-Man game as a MDP.
Assumptions/Rules of PAC MAN:

- When a ghost first enters the board from the center box it picks a direction at random and moves in that direction.
- A ghost only changes directions when it reaches a wall.
- When a ghost reaches a wall, it picks randomly among the possible directions and begins moving in the randomly selected direction.
- We do not consider fruits in game for simplicity.
- We do not consider number of lives left for Pac man for simplicity
- Consider ghosts stay in edible states for some fixed(constant) time steps after Pac man eats power pellet.

MDP Formulation:

An MDP is defined by set of $\{\mathbf{S}, \mathbf{A}, \mathbf{T}, \mathbf{R}\}$ where
S: State Space i.e. set of all possible states ' s '.
A: Action Space i.e. set of all possible states ' a '.
R : Reward for being in a state
T: Transition dynamics/ Probability transition Matrix.

Action Space in PAC-MAN MDP:

At any given situation action of Pac-Man is choosing the direction of its movement, so

Action Space 'A' is \{Left, Right, Up, Down\}

State Space in PAC-MAN MDP:

The main objective of state space and state ' s ' at any given time ' t ' is to represent all the relevant information which helps in decision making i.e. solving the MDP.
' S_{t} ' represents the state vector i.e. state of system at time ' t '.

And ' s_{t} ' is defined by representing the following information.
States can be decomposed w.r.t pac man, ghosts, maze content and its used in Transition dynamics.

- Location of dots left in the Maze
- Current direction $\left(\mathrm{d}_{\mathrm{p}}\right)$ and location ($\mathrm{x}_{\mathrm{p}}, \mathrm{y}_{\mathrm{p}}$) of Pac man in the maze and it's distance in all 4 directions with respect to
- Distance to walls, corners
- distance to Power Pellets (each of them).
- Distance(shortest) w.r.t each ghost
- Distance to nearest dot.
- Number of ghosts in the center box of the maze
- Current location, direction of each of ghosts in the maze
- Their state i.e. are they edible or not
- Counter value for reset if ghosts are in edible state
- Distance of each ghost from power pellets
- Number of Power pallets left in the maze.
- Indicator states to illustrate possible legal actions given the maze \& Pac man's location
- A state to indicate termination.

So the state vector can be defined as
$\left[\mathrm{x}_{\mathrm{p}}, \mathrm{y}_{\mathrm{p}}, \mathrm{d}_{\mathrm{p}}, \mathrm{x}_{\mathrm{pwr}}, \mathrm{y}_{\mathrm{pwr}}, \mathrm{x}_{\mathrm{pwl}}, \mathrm{y}_{\mathrm{pwl}}, \mathrm{x}_{\mathrm{pwu}}, \mathrm{y}_{\mathrm{pwu}}, \mathrm{x}_{\mathrm{pwd}}, \mathrm{y}_{\mathrm{pwd}}, \mathrm{x}_{\mathrm{pcr}}, \mathrm{y}_{\mathrm{pcr}}, \mathrm{x}_{\mathrm{pcl}}, \mathrm{y}_{\mathrm{pcl}}, \mathrm{x}_{\mathrm{pcu}}, \mathrm{y}_{\mathrm{pcu}}\right.$,
 $\mathrm{xd}_{\mathrm{p} _\frac{\mathrm{g}}{} 4}, \mathrm{yd}_{\mathrm{p} _\mathrm{g} 4}, \mathrm{x}_{\mathrm{p} _\mathrm{d}}, \mathrm{y}_{\mathrm{p} _} \mathrm{d}, \mathrm{n} _\mathrm{g}_{\mathrm{cb}}, \mathrm{x}_{\mathrm{g} 1}, \mathrm{y}_{\mathrm{g} 1}, \mathrm{~d}_{\mathrm{g} 1}, \mathrm{e}_{\mathrm{g} 1}, \mathrm{x}_{\mathrm{g} 2}, \mathrm{y}_{\mathrm{g} 2}, \mathrm{~d}_{\mathrm{g} 2}, \mathrm{~d}_{\mathrm{g} 2}, \mathrm{x}_{\mathrm{g} 3}, \mathrm{~d}_{\mathrm{g} 3}, \mathrm{e}_{\mathrm{g} 3}, \mathrm{y}_{\mathrm{g} 3}, \mathrm{x}_{\mathrm{g} 4}$, $y_{g 4}, d_{g_{4}}, e_{g_{4}}, n _p, I_{1}, I_{r}, I_{u}, I_{d}$, Counter, Terminate, Location of dots in maze].

Where

- $\left(\mathrm{x}_{\mathrm{pwr}}, \mathrm{y}_{\mathrm{pwr}}\right)$ indicate location of wall on the right side of pac man's current location and similarly for left, up, down; in notation ' p ' stands for pac man, ' w ' stands for wall, ' r ' for right direction, similarly for other directions.
- ($\left.\mathrm{x}_{\mathrm{pcr}}, \mathrm{y}_{\mathrm{pcr}}\right)$ indicate location of corner on the right side of pac man's current location and similarly for left, up, down; in notation 'p' stands for
pac man, 'c' stands for corner, 'r' for right direction, similarly for other directions.
- ($\mathrm{x}_{\mathrm{p}_{-} \mathrm{p} _1}, \mathrm{y}_{\mathrm{p} _ \text {pp_2 }}$ indicate distance of pac man from power pellet where p stands for pacman, pp for power pellet, 1 for power pellet index to indicate distance to multiple power pellets.
- $\left(\mathrm{xd}_{\mathrm{p}_{\mathrm{g}} 1}, \mathrm{yd}_{\mathrm{p}_{\mathrm{g}} \mathrm{g} 1}\right)$ Indicate the pac man distance w.r.t each ghost in x, y axis.
- $\left(\mathrm{x}_{\mathrm{p} _\mathrm{d}}, \mathrm{y}_{\mathrm{p} _}\right)$indicate the relative position/distance for pac man w.r.t nearest dot.
- $\mathrm{n} _\mathrm{g}_{\mathrm{cb}}$ indicate the number of ghosts in the center box.
- , $\mathrm{x}_{\mathrm{g} 1}, \mathrm{y}_{\mathrm{g} 1}, \mathrm{~d}_{\mathrm{g} 1}, \mathrm{e}_{\mathrm{g} 1}$ indicate ghost states location, direction and whether a ghost is edible or not.
- n_p indicate number of power pellets left
- Counter indicate the number of time steps left until ghosts are edible.
- $\mathrm{I}_{\mathrm{l}}, \mathrm{I}_{\mathrm{r}}, \mathrm{I}_{\mathrm{u}}, \mathrm{I}_{\mathrm{d}}$ indicate legal actions possible at pac man's location.
- Terminate is a state which indicates reset when ghost eats pacman

Reward Function:

Consider score of the game which updates after every state transition or every time step, and score is the cumulative reward accumulated from the beginning of the game.

So, Δ score is the reward obtained for taking an action at state s^{0} and when we transit to state s^{1}.
Δ score for any st to $\mathrm{s}^{\mathrm{t}+1}$ is
$\mathrm{R}\left(\mathrm{s}^{\mathrm{t}}\right)=\Delta$ score $=\left\{\begin{array}{l}+1 \text { if Pac man eats dot } \\ +100 \text { if Pac man eats a ghost } \\ +1000 \text { if maze is cleared } \\ +0 \text { otherwise. } \\ -100000 \text { if ghost eats Pac man }\end{array}\right.$

Transition dynamics:

Transition dynamics define the rules of environment or game.
Let's update state vector conditioned on action i.e.

- Dots location: If Pac man eats a dot then remove that dot location from state vector otherwise dots location states remain same.
- Power Pellets: If Pac man eats a power then remove that pellet's location from state vector otherwise power pellets location states remain same.(n_p, $\mathrm{x}_{\mathrm{p} _\mathrm{pp}}, \mathrm{y}_{\mathrm{p} _\mathrm{pp}}$)
- Ghosts States (for each of the ghost):
- If Ghost eats Pac man: terminate game/reset.
- Counter:
- If Pac Man eats a power pellet Initialize/ reinitialize counter
- Else if counter value is non-zero decrement it by one
- Edible State:
- If Counter value (after update) $\neq 0$ then ghost is edible i.e. $\mathrm{e}_{\mathrm{g}}=1$
- If counter value is 0 (after update), ghost is not edible i.e. $\mathrm{e}_{\mathrm{g}}=0$.
- Location:
- If Pac Man eats ghost, ghost location is reset to center box i.e. $\left[\left(\mathrm{x}_{\mathrm{g}}, \mathrm{y}_{\mathrm{g}}\right)=(0,0)\right]$ and number of ghosts in center box is also updated i.e. $\mathrm{n}_{\mathrm{g}} \mathrm{g}_{\mathrm{cb}}++$.
- Else if ghost bumps into a wall chose one of possible directions randomly and update ($\mathrm{x}_{\mathrm{g}}, \mathrm{y}_{\mathrm{g}}$) in that direction.
- Else if ghost is at the center it chooses a direction randomly and then update ($\mathrm{x}_{\mathrm{g}}, \mathrm{y}_{\mathrm{g}}$) in chosen direction.
- Else (regular ghost state update) update ($\mathrm{x}_{\mathrm{g}}, \mathrm{yg}_{\mathrm{g}}$) in its current direction.
- Pac Man States: Once ghost states are updated,
- Update Pac man's current position and direction after taking an action. ($\mathrm{x}_{\mathrm{p}}, \mathrm{y}_{\mathrm{p}}, \mathrm{d}_{\mathrm{p}}$)
- Update Distance w.r.t each ghost states, Power pellets of Pac man
- Also update distance w.r.t walls, corners in all directions w.r.t Pac man's current position.
- Update possible actions at updated pac man's position. ($\left.\mathrm{I}_{\mathrm{l}}, \mathrm{I}_{\mathrm{r}}, \mathrm{I}_{\mathrm{u}}, \mathrm{I}_{\mathrm{d}}\right)$

