
CS533
Intelligent Agents and Decision Making

Infinite Horizon Markov Decision Problems

1. Some MDP formulations use a reward function R(s, a) that depends on the action taken in a
state or a reward function R(s, a, s′) that also depends on the result state s′ (we get reward
R(s, a, s′) when we take action a in s and then transition to s′). Write the Bellman optimality
equation with discount factor β for each of these two formulations.

2. In this exercise you will prove that the Bellman Backup operator is a contraction operator.

(a) Prove that, for any two functions f and g,

|max
a

f(a)−max
a

g(a)| ≤ max
a
|f(a)− g(a)|.

(b) Use the above result in order to prove that the Bellman Backup operator B[·] is a
contraction mapping. That is, prove that for any two value function V and V ′,

||B[V ]−B[V ′]|| ≤ β||V − V ′||

where B is the Bellman backup operator, β is the discount factor, and || · || is the max
norm. By the definition of the max norm, this is equivalent to proving that for any state
s,

|B[V ](s)−B[V ′](s)| ≤ β||V − V ′||.

3. Consider a trivially simple MDP with two states S = {s0, s1} and a single action A = {a}.
The reward function is R(s0) = 0 and R(s1) = 1. The transition function is T (s0, a, s1) = 1
and T (s1, a, s1) = 1. Note that there is only a single policy π for this MDP that takes action
a in both states.

(a) Using a discount factor β = 1 (i.e. no discounting), write out the linear equations for
evaluating the policy and attempt to solve the linear system. What happens and why?

(b) Repeat the previous question using a discount factor of β = 0.9.

4. The Bellman Backup operator satisfies the monotonicity property, which states that for any
two value functions V and V ′, if V ≤ V ′, then B[V ] ≤ B[V ′]. Prove this monotonicity
property of B.

5. In class we presented the policy iteration algorithm, which used a “greedy” policy improve-
ment operation. That is, the improved policy π′ at each iteration selected the action that
maximized the one-step-look ahead value:

π′(s) = arg max
a∈A

∑
s′∈S

T (s, a, s′)Vπ(s′)

where π is the current policy.

Consider a version of policy iteration, which uses a non-greedy policy improvement operator.
This operator returns a policy π′ that selects an action in each state that improves over the
current action selected by π if possible. But we do not require that π′ return the best action.



More formally, the non-greedy policy improvement operators returns a policy π′ such that for
any state s, ∑

s′∈S
T (s, π′(s), s′)Vπ(s′) ≥

∑
s′∈S

T (s, π(s), s′)Vπ(s′)

with strict inequality when possible.

Prove that the non-greedy policy improvement operator guarantees that Vπ′ ≥ Vπ with strict
inequality when π is not optimal.


