
CS533: Intelligent Agents and Decision Making

Assignment 3: Optimizing Infinite-Horizon Discounted Reward with
Application to Optimal Parking

You can use any programming language for the project, including MATLAB. In addition to the
write-up materials indicated below, you should also send all of your code to me when you submit
the assignment. Submit the project via Canvas.

In this project you will implement an MDP planning algorithm and apply it to the problem of
“optimal parking”.

1 Part I: Build a Planner

Implement an MDP planning algorithm for optimizing expected infinite-horizon discounted cumu-
lative reward. We learned three such algorithms, value iteration, policy iteration, and modified
policy iteration. You are free to choose which one to implement. The input to your algorithm
should be a description of an MDP and a discount factor. The MDP input format should be the
same as used for HW1. The output should be an (approximately) optimal value function and policy
for the MDP and discount factor. The output format could be two n-dimensional vectors, one for
the value function and one for the policy.

2 Part II: Run the Planner

The instructor will provide you with two MDPs in the input format specified above. You should
run your code on those MDPs and provide the resulting policies and value functions for discount
factors equal to 0.1 and 0.9. If you are using an algorithm that does not necessarily result in an
optimal policy, you should provide a bound on how suboptimal the resulting policies are. You can
refer to the course notes for this purpose—recall, that this bound can be computed in terms of the
“Bellman error” across iterations.

3 Part III: Parking Domain

Most people like to park close to wherever they are going. This desire often seems to lead to
irrational behavior—for example, driving around a parking lot for several minutes looking for a
slightly closer spot. Here we will see what an MDP planner does in this scenario.

You should first design a simple MDP to represent the experience of parking a car. The MDP
should capture the following qualitative characteristics of the parking problem:

1. Parking spots closer to the store are more desirable to the agent.

2. The probability that a parking spot is available is smaller the closer a spot is to the store.

3. It is undesirable to spend much time searching for a spot (i.e. driving around the parking
lot).

4. The parking lot should have two rows of parking spaces A and B (see below figure) that must
be traveled in a loop. These rows are parallel to each other and have n parking spots labeled
A[1], . . . , A[n] and B[1], . . . , B[n]. A[1] and B[1] are closest to the store, A[n] and B[n] are
furthest from the store. In row A the agent can only drive toward the store (i.e. move from
A[i] to A[i− 1]) unless the agent is in A[1] where it can only move to B[1]. When the agent
is in row B it can only move away from the store (i.e. move from B[i] to B[i + 1]), unless
the agent is in row B[n] where it can only move to A[n]. Thus the agent can only drive in a
“circular” motion around rows A and B.

STORE

A[1] B[1]

A[2] B[2]

........

A[n] B[n]

5. The parking spots closest to the store A[1] and B[1] are handicap spots. There is a high cost
(negative reward) for parking in these spots (although they are desirable with respect their
closeness to the store). Also the probability that the handicap spot is available should be
high.

6. If an agent attempts to park in a spot that contains a car, then there is a high cost (negative
reward) since there will be a collision.

7. A parking trial ends when the agent decides to park, resulting in either a collision or a parked
car. This means that the MDP will transition to a terminal state that it stays in forever (all
actions result in no transition).

You need to specify an MDP that roughly represents the above features. Here is a suggested
structure, but you are free to try something else.

• State Space: Each state can be viewed as a triple (L,O, P) where L is a location (one of
the A[i] or B[i]), O is a boolean variable that is TRUE if the spot at that location is occupied
by another car, and P is a boolean variable that is TRUE if the agent is parked (or tried to
park) at the location. Thus there will be 8n states since there are 2n locations and two values
of A and B. Initially P will be FALSE and the trial ends when P is true. That is, any state
where P is true is considered to be a terminal state.

• Actions: There are three actions PARK, DRIVE, and EXIT. When the action DRIVE is
taken the agent is moved to the next parking spot (according to the circular driving pattern
described above) and a coin is flipped to set the value of O. The probability that O is true
should increase for spots closer to the store (the details of this are up to you). However the
probability that O is true for handicap spots A[1] or B[1] should be very low. The DRIVE
action does not change the P variables (P is initialized to be FALSE). When the action PARK
is taken the value of P is set to TRUE and L and O are left unchanged. The action exit does
not change the state for any state where P is false. When P is true the action EXIT causes
the trial to terminate and will always be the last action taken.

• Reward: States where P is FALSE will get a negative reward that represents the cost of
driving. This way if the agent drives for a long time it will accumulate negative reward.
Thus,long driving times will (eventually) look undesirable.

For terminal states (any state where P is TRUE) the reward should be based on the location
and the value of O. Clearly if O is TRUE then we want there to be a large cost, since this
corresponds to a collision. If O is FALSE then we want the reward to based on two factors.
There should be more reward for parking closer to the store, but parking in A[1] or B[1] (the
two closest spots) should be discouraged by giving a smaller reward (since they are handicap
spots).

• Discounting: It is most natural to use a discount factor close to 1 for this problem so that
the behavior is mainly influenced by the MDP dynamics and reward.

You should produce code that can take certain parameters that characterize a parking problem
(e.g. the various rewards and probabilities) and produces a corresponding MDP in the input format
of your planner. You will also want to be able to interpret the policy and value function output by
the planner in the context of the parking problem, so you may need to convert the output of the
planner to a meaningful representation for you.

Select a value of n (say around 10) and select two sets of parameter values. This will result in
completely specifying two MPDs (one for each set of parameter values). Select the parameters so
that you believe that the optimal behavior in each MDP is different. Run your planner on the two
MDPs.

You should produce a brief write-up that describes your MDP design and the two specific MDPs
given to your planner. Describe the optimal policy found by the planner and whether it agreed
with your intuition or not. Also describe the value function and indicate which state(s) had the
highest value.

